Detection of virulence factor encoding genes on Escherichia coli isolated from broiler chicken in Blitar District, Indonesia




Abstract. Efendi MH, Faridah HD, Wibisono FM, Wibisono FJ, Nisa N, Fatimah F, Ugbo EN. 2022. Detection of virulence factor encoding genes on Escherichia coli isolated from broiler chicken in Blitar District, IndonesiaBiodiversitas 233437-3442Broiler chicken is a source of protein that is widely consumed by the public. However, broiler chicken production sometimes decreases due to infectious diseases such as colibacillosis caused by pathogenic Escherichia coli possessing virulence genes. Virulence factors function to facilitate colonization and invasion of host cells to cause disease. The presence of these virulence factors is encoded by various genes such asthe increased serum survival gene and P fimbriae gene which plays a role in surface adhesion. The present study aims to detect the presence of virulence genes from extended-spectrum beta-lactamase (ESBL) producing E.coli isolated from broiler chickens in the Blitar District. A total of 110 cloacal swabs collected by systematic random sampling from broiler poultry farms in four different sub-districts were screened for ESBL-producing E. coli and virulence genes by phenotypic and molecular methods, respectively. Out of 110 E.coli recovered, 95 (86.4%) were observed to show a high level of resistance to the tested antibiotics, and 34 (35.7%) were ESBL-producers. Among ESBL producing E. coli isolates, 22 (73.5%) and 1 (2.9%) were found to have the iss and papC gene virulence factors, respectively using the polymerase chain reaction (PCR) method. The results of this study indicate that virulence genes can be found in E. coli from poultry farms. The iss gene is the most predominant virulence gene. The reportof these virulence factors in Ecoli isolated from broiler could impose a serious potential public health problem.


Askari Badouei M, Joseph Blackall P, Koochakzadeh A, Haghbin Nazarpak H, Sepehri MA. (2015) ‘Prevalence and clonal distribution of avian Escherichia coli isolates harboring increased serum survival (iss) gene’, Journal of Applied Poultry Research, 25(1), pp. 67–73. doi: 10.3382/japr/pfv064.
Baby, S., Kumar, K. V. and Geetha, R. K. (2020) ‘Antimicrobial Resistance Pattern of Escherichia Coli From Urinary Tract Infections in Relation to ESBL and pap gene Production and Fosfomycin Sensitivity’, Indian Journal of Public Health Research & Development, (4), pp. 92–99. doi: 10.37506/ijphrd.v11i11.11353.
Cunha MPV, Saidenberg AB, Moreno AM, Ferreira AJP, Vieira MAM, Gomes TAT, et al. (2017) ‘Pandemic extra-intestinal pathogenic Escherichia coli (ExPEC) clonal group O6-B2-ST73 as a cause of avian colibacillosis in Brazil’, PLoS ONE, 12(6), pp. 1–11. doi: 10.1371/journal.pone.0178970.
Daga AP, Koga VL, Soncini JGM, De Matos CM, Perugini MRE, Pelisson M, et al. (2019) ‘Escherichia coli Bloodstream Infections in Patients at a University Hospital: Virulence factors and clinical characteristics’, Frontiers in Cellular and Infection Microbiology, 9(JUN). doi: 10.3389/fcimb.2019.00191.
Dale, A. P. and Woodford, N. (2015) ‘Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones’, Journal of Infection, 71(6), pp. 615–626. doi: 10.1016/j.jinf.2015.09.009.
Dissanayake, D. R. A., Octavia, S. and Lan, R. (2014) ‘Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in sri lanka’, Veterinary Microbiology, 168(2–4), pp. 403–412. doi: 10.1016/j.vetmic.2013.11.028.
Doxey, A. C., Mansfield, M. J. and Lobb, B. (2019) ‘Exploring the Evolution of Virulence Factors through Bioinformatic Data Mining’, mSystems, 4(3), pp. 1–5. doi: 10.1128/msystems.00162-19.
Effendi, M.H., Tyasningsih, W., Yurianti, Y.A., Rahmahani, J., Harijani, N., Plumeriastuti, H. 2021. Presence of multidrug resistance (MDR) and extended beta-spectrum beta-lactamase (ESBL) of Escherichia coli isolated from cloacal swabs of broilers in several wet markets in Surabaya, Indonesia. Biodiversitas, 22 (1): 304-310. DOI: 10.13057/biodiv/d220137
EL-Sawah AA, Dahshan AHM, El-Nahass E-S, El-Mawgoud AIA. (2018) ‘Pathogenicity of Escherichia coli O157 in commercial broiler chickens’, Beni-Suef University Journal of Basic and Applied Sciences, 7(4), pp. 620–625. doi: 10.1016/j.bjbas.2018.07.005.
Enne VI, Personne Y, Grgic L, Gant V, Zumla A. (2014) ‘Aetiology of hospital-acquired pneumonia and trends in antimicrobial resistance’, Current Opinion in Pulmonary Medicine, 20(3), pp. 252–258. doi: 10.1097/MCP.0000000000000042.
Ewers C, Janßen T, Kießling S, Philipp HC, Wieler LH. (2005) ‘Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction’, Avian Diseases, 49(2), pp. 269–273. doi: 10.1637/7293-102604R.
Ferreira JC, Penha Filho RAC, Kuaye APY, Andrade LN, Chang YF, Darini ALC. (2018) ‘Virulence potential of commensal multidrug resistant Escherichia coli isolated from poultry in Brazil’, Infection, Genetics and Evolution, 65, pp. 251–256. doi: 10.1016/j.meegid.2018.07.037.
Firoozeh F, Saffari M, Neamati F, Zibaei M. (2014) ‘Detection of virulence genes in Escherichia coli isolated from patients with cystitis and pyelonephritis’, International Journal of Infectious Diseases, 29, pp. 219–222. doi: 10.1016/j.ijid.2014.03.1393.
Garibyan, L. and Avashia, N. (2013) ‘Polymerase chain reaction’, Journal of Investigative Dermatology, 133(3), pp. 1–4. doi: 10.1038/jid.2013.1.
Gibbs PS, Maurer JJ, Nolan LK, Wooley RE. (2003) ‘Prediction of chicken embryo lethality with the avian Escherichia coli traits complement resistance, Colicin V production, and presence of the increased serum survival gene cluster (iss)’, Avian Diseases, 47(2), pp. 370–379. doi: 10.1637/0005-2086(2003)047[0370:POCELW]2.0.CO;2.
Harijani, N., Oetama, S.J.T., Soepranianondo, K., Effendi, M.H., Tyasningsih. W. 2020. Biological Hazard on Multidrug Resistance (MDR) of Escherichia Coli Collected From Cloacal Swab of Broiler Chicken on Wet Markets Surabaya, Indian Journal of Forensic Medicine & Toxicology, 14(4): 3239-3244. DOI: 10.37506/ijfmt.v14i4.12125
Hossain M, Tabassum T, Rahman A, Hossain A, Afroze T, Momen AMI, et al. (2020) ‘Genotype–phenotype correlation of ?-lactamase-producing uropathogenic Escherichia coli (UPEC) strains from Bangladesh’, Scientific Reports, 10(1), pp. 1–13. doi: 10.1038/s41598-020-71213-5.
Ibrahim RA, Cryer TL, Lafi SQ, Basha EA, Good L, Tarazi YH. (2019) ‘Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors’, BMC Veterinary Research, 15(1), pp. 1–16. doi: 10.1186/s12917-019-1901-1.
Ievy S, Islam MS, Sobur MA, Talukder M, Rahman MB, Khan MFR, et al. (2020) ‘Molecular detection of avian pathogenic escherichia coli (Apec) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns’, Microorganisms, 8(7), pp. 1–15. doi: 10.3390/microorganisms8071021.
Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. (2017) ‘Environmental Escherichia coli: ecology and public health implications—a review’, Journal of Applied Microbiology, 123(3), pp. 570–581. doi: 10.1111/jam.13468.
Johnson, T. J., Wannemuehler, Y. M. and Nolan, L. K. (2008) ‘Evolution of the iss gene in Escherichia coli’, Applied and Environmental Microbiology, 74(8), pp. 2360–2369. doi: 10.1128/AEM.02634-07.
Kagambèga A, Martikainen O, Siitonen A, Traoré AS, Barro N, Haukka K. (2012) ‘Prevalence of diarrheagenic Escherichia coli virulence genes in the feces of slaughtered cattle, chickens, and pigs in Burkina Faso’, MicrobiologyOpen, 1(3), pp. 276–284. doi: 10.1002/mbo3.30.
Kolenda, R., Burdukiewicz, M. and Schierack, P. (2015) ‘A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli.’, Frontiers in Cellular and Infection Microbiology, 5(FEB). doi: 10.3389/fcimb.2015.00023.
Leitão, J. H. (2020) ‘Microbial virulence factors’, International Journal of Molecular Sciences, 21(15), pp. 1–6. doi: 10.3390/ijms21155320.
Luna-Guevara JJ, Arenas-Hernandez MMP, Martínez De La Peña C, Silva JL, Luna-Guevara ML. (2019) ‘The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures’, International Journal of Microbiology, 2019. doi: 10.1155/2019/2894328.
Mohamed, M. A., Shehata, M. A. and Rafeek, E. (2014) ‘Virulence genes content and antimicrobial resistance in escherichia coli from broiler chickens’, Veterinary Medicine International, 2014. doi: 10.1155/2014/195189.
Paixão AC, Ferreira AC, Fontes M, Themudo P, Albuquerque T, Soares MC, et al. (2016) ‘Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates’, Poultry Science, 95(7), pp. 1646–1652. doi: 10.3382/ps/pew087.
Paramita RI, Nelwan EJ, Fadilah F, Renesteen E, Puspandari N, Erlina L. (2021) ‘Genome-based characterization of Escherichia coli causing bloodstream infection through next-generation sequencing’, PLoS ONE, 15(12 December), pp. 1–13. doi: 10.1371/journal.pone.0244358.
Permatasari, D.A., Witaningrum, A.M., Wibisono, F.J., Effendi, M.H. 2020. Detection and prevalence of multidrug-resistant Klebsiella pneumoniae strains isolated from poultry farms in Blitar, Indonesia. Biodiversitas, 21 (10): 4642-4647. DOI: 10.13057/biodiv/d211024
Prihtiyantoro W, Slipranata M, Aziz F. (2014) Karakterisasi Faktor Virulensi Escherichia Coli Patogen Zoonotik (O157:H7) Isolat Asal Tinja Sapi Potong. Agros, 16(2), pp. 401–411.
Rahmahani J, Salamah, Mufasirin, Tyasningsih W, and Effendi MH. 2020. Antimicrobial Resistance Profile of Escherichia coli From Cloacal Swab of Domestic Chicken in Surabaya Traditional Market. Biochem. Cell. Arch. 20 (1): 2993-2997. DOI: 10.35124/bca.2020.20. S1.2993
Sadeghi Bonjar MS, Salari S, Jahantigh M, Rashki A. (2017) ‘Frequency of iss and irp2 genes by PCR method in Escherichia coli isolated from poultry with colibacillosis in comparison with healthy chicken in poultry farms of Zabol, South East of Iran’, Polish Journal of Veterinary Sciences, 20(2), pp. 363–367. doi: 10.1515/pjvs-2017-0044.
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. (2004) ‘Molecular basis of bacterial resistance to chloramphenicol and florfenicol’, FEMS Microbiology Reviews, 28(5), pp. 519–542. doi: 10.1016/j.femsre.2004.04.001.
Sonda T, Kumburu H, van Zwetselaar M, Alifrangis M, Mmbaga BT, Aarestrup FM, et al. (2018) ‘Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania’, Antimicrobial Resistance and Infection Control, 7(1), pp. 1–12. doi: 10.1186/s13756-018-0361-x.
Wibisono FJ, Sumiarto B, Untari T, Effendi MH, Permatasari DA, Witaningrum AM. (2020) ‘CTX Gene of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli on Broilers in Blitar, Indonesia’, Systematic Reviews in Pharmacy, 11(7), pp. 396–403. doi: 10.31838/srp.2020.7.59.
Wibisono, F.J., Sumiarto, B., Untari, T., Effendi, M.H., Permatasari, D.A., Witaningrum, A.M. 2020. Short Communication: Pattern of antibiotic resistance on extended-spectrum beta-lactamases genes producing Escherichia coli on laying hens in Blitar, Indonesia. Biodiversitas, 21 (10): 4631- 4635. DOI: 10.13057/biodiv/d211022
Wibisono, F.J., Sumiarto, B., Untari, T., Effendi, M.H., Permatasari, D.A., Witaningrum, A.M. 2021. Molecular Identification of CTX Gene of Extended Spectrum Beta-Lactamases (ESBL) Producing Escherichia coli On Layer Chicken In Blitar, Indonesia. The J. Anim. Plant Sci., 31 (4): 954-959. DOI: 10.36899/JAPS.2021.4.0289
Widodo, A., Effendi, M.H., Khairullah, A.R. 2020. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from livestock. Sys Rev Pharm, 11 (7): 382-392. DOI: 10.31838/srp.2020.7.57

Most read articles by the same author(s)

1 2 3 4 5 > >>