Evaluation of seagrass beds as a foraging and nursery habitat based on the structure of the fish community in Nusmapi Island, West Papua, Indonesia




Abstract. Manangkalangi E, Sembel L, Tebaiy S, Manuputty A, Rumayomi MR, Musyeri P, Sawaki D, Orissu D, Manumpil AW, Kaber Y. 2022. Evaluation of seagrass beds as a foraging and nursery habitat based on the structure of the fish community in Nusmapi Island, West Papua, Indonesia. Biodiversitas 23: 5539-5550. Seagrass beds are one of the ecosystems inhabited by various coastal aquatic fauna, including fish. However, information on the temporal role of this ecosystem for fish fauna, particularly diurnal and nocturnal, is still limited. Therefore, this study was conducted to describe daily variations in the fish species composition, their ecological index, developmental stages, and trophic groups in a seagrass bed on Nusmapi Isl., Manokwari. The species composition differed between day and night sampling periods based on the results obtained from 40 species of fish belonging to 21 families and 7 orders. Furthermore, fish species consisted of three trophic groups (omnivores, carnivores, and herbivores), with omnivores and carnivores dominating during the day and at night by 48.6% and 87.5%, respectively. Species found in seagrass beds majorly consisted of juvenile stage individuals (65.9%). Individual abundance varied from day to night and was mainly found among group-forming species, such as S. spinus, S. trilineata, S. punctatissimum, and M. pralinia. The index of diversity, evenness, and dominance at the two relatively similar sampling times described the overall stability of fish communities in seagrass beds. The results indicate that seagrass beds serve as foraging and nursery grounds for many fish species in coastal waters. In addition, the management and protection of fish biodiversity and coastal fishery resources are affected by the ecosystem function.


Abrantes KG, Barnett A, Baker R, Sheaves M. 2015. Habitat-specific food webs and trophic interactions supporting coastal-dependent fishery species: an Australian case study. Reviews in Fish Biology and Fisheries. 25: 337-363. DOI: 10.1007/s11160-015-9385-y
Allen GR, Erdmann MV. 2012. Reef fishes of the East Indies. Volumes I-III. Tropical Reef Research, Perth, Australia. 1292 p.
Ambo-Rappe R, Nessa MN, Latuconsina H, Lajus DL. 2013. Relationship between the tropical seagrass bed characteristics and the structure of the associated fish community. Open Journal of Ecology. 3(5): 331-342. Doi: 10.4236/oje.2013.35038.
Ambo-Rappe R. 2016. Differences in richness and abundance of species assemblages in tropical seagrass beds of different structural complexity. Journal of Environmental Science and Technology. 9(3): 246-256. DOI: 10.3923/jest.2016.246.256
Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE. 2019. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Frontiers in Ecology and the Environment. 17(8): 445-454. DOI:10.1002/fee.2088
Darmawaty, Abubakar S, Kepel RC, Djamaluddin R, Wahidin N, Rina, Subur R, Sabar M, Kadir MA, Akbar N. 2022. Fish community structure based on density and coverage of seagrass meadows in North Oba, Tidore Islands, North Maluku. AACL Bioflux. 15(2): 652-661.
Davis JP, Pitt KA, Fry B, Olds AD, Connolly RM. 2014. Seascape-scale trophic links for fish on inshore coral reefs. Coral Reefs. 33: 897-907. DOI: 10.1007/s00338-014-1196-4
Duffy JE, Godwin CM, Cardinale BJ. 2017. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature. 549: 261-264. DOI: 10.1038/nature23886
Du J, Wang Y, Peristiwady T, Liao J, Makatipu PC, Huwae R, Ju P, Loh KH, Chen B. 2018. Temporal and spatial variation of fish community and their nursery in a tropical seagrass meadow. Acta Oceanologica Sinica. 37(12): 63-72. DOI: 10.1007/s13131-018-1288-z
Du J, Zheng X, Peristiwady T, Liao J, Makatipu PC, Yin X, Hu W, Koagouw W, Chen B. 2016. Food sources and trophic structure of fishes and benthic macroinvertebrates in a tropical seagrass meadow revealed by stable isotope analysis. Marine Biology Research. 12(7): 748-757. DOI: 10.1080/17451000.2016.1183791
Espinoza M, Heupel MR, Tobin AJ, Simpfendorfer CA. 2016. Evidence of partial migration in a large coastal predator: Opportunistic foraging and reproduction as key drivers? PLoS ONE. 11(2): e0147608. DOI: 10.1371/journal.pone.0147608
French B, Wilson S, Holmes T, Kendrick A, Rule M, Ryan N. 2021a. Comparing five methods for quantifying abundance and diversity of fish assemblages in seagrass habitat. Ecological Indicators. 124: 107415. DOI: 10.1016/j.ecolind.2021.107415.
French B, Wilson S, Kendrick A, Rule M. 2021b. The mesh size effect: counting long thin fish in seagrass. Fisheries Research. 242: 106019. DOI: 10.1016/j.fishres.2021.106019
Froese R, Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity, and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology. 56(4): 758-773. DOI: 10.1111/j.1095-8649.2000.tb00870.x
Froese R, Pauly D. (Editors). 2022. FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2022).
Hemminga MA, Duarte CM. 2000. Seagrass Ecology. Cambridge University Press, Cambridge, UK. 298 pp.
Ho NAJ, Ooi JLS, Affendi YA, Chong VC. 2018. Influence of habitat complexity on fish density and species richness in structurally simple forereef seagrass meadows. Botanica Marina. 61(6): 547-557. DOI: 10.1515/bot-2017-0115
Honda K, Nakamura Y, Nakaoka M, Uy WH, Fortes MD. 2013. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE. 8(8): e65735. DOI: 10.1371/journal.pone.0065735
Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 486: 105-108. DOI: 10.1038/nature11118
Jones BL, Nordlund LM, Unsworth RKF, Jiddawi NS, Eklöf JS. 2021. Seagrass structural traits drive fish assemblages in small-scale fisheries. Frontier in Marine Science. 8: 640528. DOI: 10.3389/fmars.2021.640528
Kimirei IA, Nagelkerken I, Trommelen M, Blankers P, van Hoytema N, Hoeijmakers D, Huijbers CM, Mgaya YD, Rypel AL. 2013. What drives ontogenetic niche shifts of fishes in coral reef ecosystems? Ecosystems. 16: 783-796. DOI: 10.1007/s10021-013-9645-4
Kinoshita H, Kamimura Y, Kirai K, Mizuno K-I, Iwamoto Y, Shoji J. 2012. Vulnerability of juvenile fish to piscivorous fish predators increases during nighttime in a seagrass bed in the central Seto Inland Sea, Japan. Bulletin of the Japanese Society of Fisheries Oceanography. 76(1): 24-30.
Krebs CJ. 1989. Ecological methodology. Herper Collins Publisher, New York. 654 pp.
Kwak SN, Klumpp DW, Park JM. 2015. Feeding relationships among juveniles of abundant fish species inhabiting tropical seagrass beds in Cockle Bay, North Queensland, Australia. New Zealand Journal of Marine and Freshwater Research. 49(2): 205-223. DOI: 10.1080/00288330.2014.990467
Latuconsina H., Ambo-Rappe R. 2013. Daily variability of fish community in seagrass beds of Tanjung Tiram-Inner Ambon Bay. Jurnal Iktiologi Indonesia. 13(1): 35-53. DOI: 10.32491/jii.v13i1.110. [Indonesian]
Latuconsina H, Sangadji M, Sarfan L. 2014. Community structure of seagrass fish in the watters of Wael Beach, Kotania Bay, West Seram Regency. Agrikan: Jurnal Agribisnis Perikanan. 6(3): 24-32. DOI: 10.29239/j.agrikan.6.0.24-32. [Indonesian]
Leatemia SPO, Pakilaran EL, Kopalit H. 2017. Macrozoobenthos abundancy in vegettated (seagrass) and un-vegettated areas of Doreri Bay-Manokwari. Jurnal Sumberdaya Akuatik Indopasifik. 1(1): 15-26. DOI: 10.30862/jsai-fpik-unipa.2017.Vol.1.No.1.13. [Indonesian]
Lee C-L, Huang Y-H, Chung C-Y, Lin H-J. 2014. Tidal variation in fish assemblages and trophic structures in tropical Indo-Pacific seagrass beds. Zoological Studies. 53: 56. doi: 10.1186/ s40555-014-0056-9
Lee C-L, Lin H-J. 2015. Ontogenetic habitat utilization patterns of juvenile reef fish in low predation habitats. Marine Biology. 162: 1799-1811. DOI: 10.1007/s00227-015-2712-y
Lee C-L, Lin W-J, Liu P-J, Shao K-T, Lin H-J. 2021. Highly productive tropical seagrass beds support diverse consumers and a large organic carbon pool in the sediments. Diversity. 13(11): 544. DOI: 10.3390/d13110544
Lee C-L, Wen CKC, Huang Y-H, Chung C-Y, Lin H-J. 2019. Ontogenetic habitat usage of juvenile carnivorous fish among seagrass-coral mosaic habitats. Diversity. 11(2): 25. DOI: 10.3390/d11020025
Leopardas V, Uy W, Nakaoka M. 2014. Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines: Variation among vegetation dominated by different seagrass species. Journal of Experimental Marine Biology and Ecology. 457: 71-80. DOI: 10.1016/j.jembe.2014.04.006
Lin J, Huang Y, Arbi UY, Lin H, Azkab MH, Wang J, He X, Mou J, Liu K, Zhang S. 2018. An ecological survey of the abundance and diversity of benthic macrofauna in Indonesian multispecific seagrass beds. Acta Oceanologica Sinica. 37(6): 82-89. DOI: 10.1007/s13131-018-1181-9
McCloskey RM, Unsworth RKF. 2015. Decreasing seagrass density negatively influences associated fauna. PeerJ. 3: e1053. DOI 10.7717/peerj.1053
Moussa RM, Bertucci F, Jorissen H, Gache C, Waqalevu VP, Parravicini V, Lecchini D, Galzin R. 2020. Importance of intertidal seagrass beds as nursery area for coral reef fish juveniles (Mayotte, Indian Ocean). Regional Studies in Marine Science. 33: 100965. DOI: 10.1016/j.rsma.2019.100965
Nagelkerken I, Sheaves M, Baker R, Connoly RM. 2015. The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries. 16(2): 362-371. DOI: 10.1111/faf.12057
Nakamura Y, Hirota K, Shibuno T, Watanabe Y. 2012. Variability in nursery function of tropical seagrass beds during fish ontogeny: Timing of ontogenetic habitat shift. Marine Biology. 159: 1305-1315. DOI: 10.1007/s00227-012-1911-z
Olds AD, Connolly RM, Pitt KA, Maxwell PS. 2012. Primacy of seascape connectivity effects in structuring coral reef fish assemblages. Marine Ecology Progress Series. 462: 191-203. DOI: 10.3354/meps09849
Pattipeilohy WR, Leatemia SPO, Pattiasina TF, Talakua S. 2020. Fish community structure in seagrass beds of Doreri Bay Manokwari Regency. Musamus Fisheries and Marine Journal. 3(1): 17-28. Doi: 10.35724/mfmj.v3i1.2961. [Indonesian]
Pogoreutz C, Kneer D, Litaay M, Asmus H, Ahnelt H. 2012. The influence of canopy structure and tidal level on fish assemblages in tropical Southeast Asian seagrass meadows. Estuarine, Coastal and Shelf Science. 107: 58-68. DOI: 10.1016/j.ecss.2012.04.022
Rasher DB, Hoey AS, Hay ME. 2013. Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology. 94(6): 1347-1358. DOI: 10.1890/12-0389.1
Richardson LE, Graham NAJ, Pratchett MS, Hoey AS. 2017. Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environmental Biology of Fishes. 100(3): 193-207. DOI: 10.1007/s10641-016-0571-0
Sambrook K, Hoey AS, Andréfouët S, Cumming GS, Duce S, Bonin MC. 2019. Beyond the reef: The widespread use of non?reef habitats by coral reef fishes. Fish and Fisheries. 20(5): 903-920. DOI: 10.1111/faf.12383
Shantz AA, Ladd MC, Schrack E, Burkepile DE. 2015. Fish?derived nutrient hotspots shape coral reef benthic communities. Ecological Applications. 25: 2141-2152. DOI: 10.1890/14-2209.1
Shoji J, Mitamura H, Ichikawa K, Kinoshita H, Arai N. 2017. Increase in predation risk and trophic level induced by nocturnal visits of piscivorous fishes in a temperate seagrass bed. Scientific Reports. 7: 3895. DOI: 10.1038/s41598-017-04217-3
Simanjuntak CPH, Noviana, Putri AK, Rahardjo MF, Djumanto, Syafei LS, Abdillah D. 2020. Species composition and abundance of small fishes in seagrass beds of the Karang Congkak Island, Kepulauan Seribu National Park, Indonesia. IOP Conference Series: Earth and Environmental Science. 404: 012063. DOI:10.1088/1755-1315/404/1/012063
Susilo ES, Sugianto DN, Munasik, Nirwani, Suryono CA. 2018. Seagrass parameter affect the fish assemblages in Karimunjawa Archipelago. IOP Conference Series: Earth and Environmental Science. 116: 012058. DOI: 10.1088/1755-1315/116/1/012058
Syukur A, Al-Idrus A, Zulkifli L. 2021. Seagrass-associated fish species’ richness: evidence to support conservation along the south coast of Lombok Island, Indonesia. Biodiversity. 22(2): 988-998. Doi: 10.13057/biodiv/d220255
Unsworth RKF, Wylie E, Smith DJ, Bell JJ. 2007. Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine, Coastal and Shelf Science. 72: 81-88. Doi: 10.1016/j.ecss.2006.10.006
Watanabe Y, awamura T, Yamashita Y. 2018. Introduction: the coastal ecosystem complex as a unit of tructure and function of biological productivity in coastal areas. Fisheries Science. 84: 149-152. DOI: 10.1007/s12562-018-1176-7
Zarco-Perello S, Enríquez S. 2019. Remote underwater video reveals higher fish diversity and abundance in segrass meadows, and habitat differences in trophic interactions. Scientific Reports. 9: 6596. DOI: 10.1038/s41598-019043037-5