The method of forest change detection using Sentinel-2 optical satellite imagery and Sentinel-1 radar imagery: A case study in Dak Nong Province, Vietnam

##plugins.themes.bootstrap3.article.main##

TRAN QUANG BAO
NGUYEN VAN THI
LE SY DOANH
PHAM VAN DUAN
LA NGUYEN KHANG
NGUYEN TRONG CUONG
BUI TRUNG HIEU
DAO THI THANH MAI
DINH VAN TUYEN

Abstract

Abstract. Bao TQ, Thi NV, Doanh LS, Duan PV, Khang LN, Cuong NT, Hieu BT, Mai DTT, Tuyen DV. 2022. The method of forest change detection using Sentinel-2 optical satellite imagery and Sentinel-1 radar imagery: A case study in Dak Nong Province, Vietnam. Biodiversitas 23: 4800-4809. This study presents the findings of forest change detection in Dak Nong Province, Vietnam by combining the NDVI of Sentinel-2 satellite imagery and the backscatter (BKS) values of VH and VV polarizations from the first quarter of 2020 to the first quarter of 2021 and using the combination model of BKS and NDVI (CMB) to determine the NDVI and Backscatter Change Index (NBCI) between the two periods, which were processed and analyzed in Google Earth Engine. The verification results on 270 samples for all 3 indices show that the results of forest loss detection using NBCI index, NDVI index, and BKS index reach 93.3%, 83.3% and 73.3%, respectively; the results of identifying the areas with no forest change using NBCI index, NDVI index, and BKS index achieve 97.8%, 92.2% and 83.3%, respectively; the results of forest increase detection using NBCI index, NDVI index, and BKS index reach 90.0%, 85.6% and 68.9%, respectively. The NBCI index for Dak Nong Province indicated that during the study period, the the province lost 1,198.9 hectares forest area, whereas it gained 871.3 hectares of the same.

##plugins.themes.bootstrap3.article.details##

References
Addabbo P, Focareta M, Marcuccio S, Votto C, Ullo SL. 2016. Contribution of Sentinel-2 data for applications in vegetation monitoring. Acta Imeko 5: 44-54. DOI: 10.21014/acta_imeko.v5i2.352.
Bargiel D, Herrmann S. 2011. Multi-temporal land-cover classification of agricultural areas in two European regions with high resolution spotlight TerraSAR-X data. Remote Sens 3 (5): 859-877. DOI: 10.3390/rs3050859.
Bartholomé E, Belward AS. 2005. GLC2000: A new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26 (9): 1959-1977. DOI: 10.1080/01431160412331291297.
Bezy JL, Delwart S, Gourmelon G, Bessudo R, Baudin G, Sontag H, Weiss S. 1997. Medium-resolution imaging spectrometer (MERIS). Proc SPIE Advanced and Next-Generation Satellites II 2957: 31-41. DOI: 10.1117/12.265446.
Bouvet A, Le TT. 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens Environ 115 (4): 1090-1101. DOI: 10.1016/j.rse.2010.12.014.
Cable JW, Kovacs JM, Shang J, Jiao X. 2014. Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada. Remote Sens 6 (3): 2372-2392. DOI: 10.3390/rs6032372.
Carrasco L, O’Neil AW, Morton RD, Rowland CS. 2019. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens 11 (3): 288. DOI: 10.3390/rs11030288.
Devaney J, Barrett B, Barrett F, Redmond J, O`Halloran J. 2015. Forest cover estimation in Ireland using radar remote sensing: A comparative analysis of forest cover assessment methodologies. PLoS One 10 (8): e0133583. DOI: 10.1371/journal.pone.0133583.
Dial G, Bowen H, Gerlach F, Grodecki J, Grodecki R. 2003. IKONOS satellite, imagery, and products. Remote Sens Environ 88 (1-2): 23-36. DOI: 10.1016/j.rse.2003.08.014.
Dusseux P, Corpetti T, Hubert-Moy L, Corgne S. 2014. Combined use of multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens 6 (7): 6163-6182. DOI: 10.3390/rs6076163.
Estel S, Kuemmerle T, Alcántara C, Leversa C, Prishchepov A, Hostert P. 2015. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens Environ 163: 312-325. DOI: 10.1016/j.rse.2015.03.028.
Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X.. 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens Environ 114 (1): 168-182. DOI: 10.1016/j.rse.2009.08.016.
Gómez-Chova L, Amorós-López J, Mateo-García G, Muñoz-Marí J, Camps-Valls G. 2017. Cloud masking and removal in remote sensing image time series. J Appl Remote Sens 11 (1): 015005. DOI: 10.1117/1.JRS.11.015005.
Griffiths P, Kuemmerle T, Baumann M, et al. 2014. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ 151: 72-88. DOI: 10.1016/j.rse.2013.04.022.
Griffiths P, Kuemmerle T, Kennedy RE, Abrudan IV, Knorn J, Hostert P. 2012. Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens Environ 118: 199-214. DOI: 10.1016/j.rse.2011.11.006
Hansen MC, Defries RS, Townshend JRG, Sohlberg R. 2010. Global land cover classification at 1 km spatial resolution using a classification tree approach. Intl J Remote Sens 21 (6-7): 1331-1364. DOI: 10.1080/014311600210209.
Hansen MC, Potapov PV, Moore R et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342 (6160): 850-853. DOI: 10.1126/science.1244693.
Hirschmugl M, Sobe C, Deutscher J, Schardt M. 2018. Combined use of optical and synthetic aperture radar data for REDD+ applications in Malawi. Land 7 (4): 116. DOI: 10.3390/land7040116.
Hoan NT, Tateishi R, Alsaaideh B, Ngigi T, Alimuddin I, Johnson B. 2012. Tropical forest mapping using a combination of optical and microwave data of ALOS. Intl J Remote Sens 34 (1): 139-153. DOI: 10.1080/01431161.2012.709329.
Homer CG, Dewitz J, Fry J et al. 2007. Completion of the 2001 national land cover database for the counterminous United States. Photogramm Eng Remote Sens 73 (4): 337-341.
Hostert P, Griffiths P, van der Linden S, Pflugmacher D. 2015. Time series analyses in a new era of optical satellite data. In: Kuenzer C, Dech S, Wagner W (eds). Remote Sensing Time Series, vol 22, Springer, Cham. DOI: 10.1007/978-3-319-15967-6_2
Joshi N, Baumann M, Ehammer A et al. 2016. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens 8 (1): 70. DOI: 10.3390/rs8010070.
Kovalskyy V, Roy DP. 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens Environ 130: 280-293. DOI: 10.1016/j.rse.2012.12.003.
McNairn H, Shang J. 2016. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In: Ban Y (eds). Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing, vol 20. Springer, Cham. 317-340. DOI: 10.1007/978-3-319-47037-5_15.
Morton D, Rowland C, Wood C et al. 2011. Final report for LCM2007-the new UK land cover map. Countryside survey technical report no 11/07. Centre for Ecology & Hydrology (Natural Environment Research Council). Retrieved from https://www.ceh.ac.uk/sites/default/files/LCM2007%20Final%20Report.pdf, accessed on 08.02.2022
Ngo KD, Lechner AM, Vu TT. 2020. Land cover mapping of the Mekong Delta to support natural resource management with multi-temporal Sentinel-1A synthetic aperture radar imagery. Remote Sens Appl Soc Environ 17: 100272. DOI: 10.1016/j.rsase.2019.100272.
Ningthoujam RK, Tansey K, Balzter H et al. 2016. Mapping forest cover and forest cover change with airborne S-Band Radar. Remote Sens 8 (7): 577. DOI: 10.3390/rs8070577.
Oehmcke S, Chen THK, Prishchepov AV, Gieseke F. 2020. Creating cloud-free satellite imagery from image time series with deep learning. Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data 1-10. DOI: 10.1145/3423336.3429345.
Pereira LDO, Freitas CDC, Sant´Anna SJS et al. 2013. Optical and radar data integration for land use and land cover mapping in the Brazilian Amazon. GIScience Remote Sens 50 (3): 301-321. DOI: 10.1080/15481603.2013.805589.
Reddy CS, Jha CS, Diwakar PG, Dadhwal VK. 2015. Nationwide classification of forest types of India using remote sensing and GIS. Environ Monit Assess 187 (12): 777. DOI: 10.1007/s10661-015-4990-8.
Roy DP, Wulder MA, Loveland TR et al. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ 145: 154-172. DOI: 10.1016/j.rse.2014.02.001.
Ryan CM, Berry NJ, Joshi N. 2014. Quantifying the causes of deforestation and degradation and creating transparent REDD+ baselines: A method and case study from central Mozambique. Appl Geogr 53: 45-54. DOI: 10.1016/j.apgeog.2014.05.014.
Santos CLMdO, Camargo Lamparelli RA, Araújo Figueiredo GKD et al. 2019. Classification of crops, pastures, and tree plantations along the season with multi-sensor image time series in a subtropical agricultural region. Remote Sens 11 (3): 334. DOI: 10.3390/rs11030334.
Shimada M, Itoh T, Motooka T et al. 2014. New global forest/non-forest maps from ALOS PALSAR data (2007-2010). Remote Sens Environ 155: 13-31. DOI: 10.1016/j.rse.2014.04.014.
Stefanski J, Kuemmerle T, Chaskovskyy O et al. 2014. Mapping land management regimes in western Ukraine using Optical and SAR data. Remote Sens 6 (6): 5279-5305. DOI: 10.3390/rs6065279.
Stumpf T, Bigman DP, Day DJ. 2021. Mapping complex land use histories and urban renewal using ground penetrating radar: A case study from Fort Stanwix. Remote Sens 13 (13): 2478. DOI: 10.3390/rs13132478.
Szigarski C, Jagdhuber T, Baur M et al. 2018. Analysis of the radar vegetation index and potential improvements. Remote Sens 10 (11): 1776. DOI: 10.3390/rs10111776.
Tavares PA, Beltrão NE, Guimarães US, Teodoro AC. 2019. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belém, Eastern Brazilian Amazon. Sensors 19 (5): 1140. DOI: 10.3390/s19051140.
Thenkabail PS. 2015. Land Resources Monitoring, Modeling, and Mapping with Remote Sensing. CRC Press Inc., Florida. DOI: 10.1201/b19322.
Whittle M, Quegan S, Uryu Y et al. 2012. Detection of tropical deforestation using ALOS-PALSAR: A Sumatran case study. Remote Sens Environ 124: 83-98. DOI: 10.1016/j.rse.2012.04.027.
Wu W, Guo H, Li X et al. 2015. Urban land use information extraction using the ultrahigh-resolution Chinese airborne SAR imagery. IEEE Trans Geosci Remote Sens 53 (10): 5583-5599. DOI: 10.1109/TGRS.2015.2425658.