The recombinant expression and antimicrobial activity determination of Cecropin-like part of Heteroscorpine-1 from Heterometrus laoticus

##plugins.themes.bootstrap3.article.main##

RIMA ERVIANA
YUTTHAKAN SAENGKUN
PRAPENPUKSIRI RUNGSA
NISACHON JANGPROMMA
MUSTOFA
SAKDA DADUANG

Abstract

Abstract. Erviana R, Saengkun Y, Rungsa P, Jangpromma N, Mustofa, Daduang S. 2022. The recombinant expression and antimicrobial activity determination of Cecropin-like part of Heteroscorpine-1 from Heterometrus laoticus. Biodiversitas 23: 5646-5653. Antimicrobial peptides are promising novel antibiotics that hold great potential in combating bacteria, fungi, viruses, and parasites. Recent interest has increased in their potential as new pharmacological agents. Large quantities of antimicrobial peptides are required in order to fulfill the demand for the peptides for scientific research and clinical trials. Gene expression systems for antimicrobial peptides have been developed, which may be utilized efficiently for various antimicrobial peptide-related studies and applications. However, many expression systems that have been developed require many steps that impact the expression cost. This study established the fast and easy expression system of recombinant Cecropin-like part of Heteroscorpine-1 (CeHS-1) and determined their activity. The gene was chemically synthesized, ligated to the expression vector pET32a, transformed to Escherichia coli BL21 (DE3) pLysS competent cell, and induced by 0.2 mM isopropyl ?-D-1-thiogalactopyranoside. The induction time optimization determined that the 3 hrs induction resulted in the highest peptides yield. The prolonged induction would decrease the peptides yield due to the toxicity of the peptides toward the host cells. The peptide purification was facilitated by His tag sequence through purifying the affinity chromatographic column of Ni-NTA. The induction was able to express the expected peptides in the soluble fraction. The antimicrobial activity assay showed that the recombinant peptides could inhibit the growth of many bacterial strains. However, their activity was lower compared to the synthetic peptides. This finding demonstrated that the developed expression system in this study might facilitate the easy and feasible expression system for CeHS-1. Additionally, the study revealed that the antimicrobial activity of the expressed peptides could be preserved.

##plugins.themes.bootstrap3.article.details##

References
Al-Ani I, Zimmermann S, Reichling J, Wink M. 2015. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine 22 (2): 245-255. DOI: 10.1016/j.phymed.2014.11.019.
Anggraeni SL, Jayus J, Ratnadewi AAI, Nurhayati N. 2022. Edamame protein hydrolysis using Lactococcus lactis, Lactobacillus bulgaricus and Lactobacillus paracasei produce short peptides with higher antioxidant potential. Biodiversitas 23: 3603-3612 DOI: 10.13057/biodiv/d230737.
Assenberg R, Wan PT, Geisse S, Mayr LM. 2013. Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23 (3): 393-402. DOI: 10.1016/j.sbi.2013.03.008.
Baneyx F. 1999. Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10 (5): 411-421. DOI: 10.1016/s0958-1669(99)00003-8.
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. 2021. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9: 630551. DOI: 10.3389/fbioe.2021.630551.
Celie PHN, Parret AHA, Perrakis A. 2016. Recombinant cloning strategies for protein expression. Curr Opin Struct Biol 38: 145-154. DOI: 10.1016/j.sbi.2016.06.010.
Deng T, Ge H, He H, Liu Y, Zhai C, Feng L, Yi L. 2017. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 140: 52-59. DOI: 10.1016/j.pep.2017.08.003.
Ernst O, Zor T. 2010. Linearization of the bradford protein assay. J Vis Exp 38: 1918. DOI: 10.3791/1918.
Erviana R, Saengkun Y, Rungsa P, Jangpromma N, Tippayawat P, Klaynongsruang S, Daduang J, Daduang S. 2021. Novel Antimicrobial peptides from a cecropin-like region of Heteroscorpine-1 from Heterometrus laoticus venom with membrane disruption activity. Molecules 26 (19): 5872. DOI: 1420-3049/26/19/5872.
Frieri M, Kumar K, Boutin A. 2017. Antibiotic resistance. J Infect Public Health 10 (4): 369-378. DOI: 10.1016/j.jiph.2016.08.007.
Harnischfeger J, Beutler M, Salzig D, Rahlfs S, Becker K, Grevelding CG, Czermak P. 2021. Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. Electron J Biotechnol 54: 26-36. DOI: 10.1016/j.ejbt.2021.08.002.
Hazam PK, Goyal R, Ramakrishnan V. 2019. Peptide based antimicrobials: Design strategies and therapeutic potential. Prog Biophys Mol Biol 142: 10-22. DOI: 10.1016/j.pbiomolbio.2018.08.006.
Janwan P, M. Intapan P, Laummaunwai P, Rodpai R, Wongkham C, Insawang T, Thanchomnang T, Sanpool O, Maleewong W. 2015. Proteomic analysis identification of antigenic proteins in Gnathostoma spinigerum larvae. Exp Parasitol 159: 53-58. DOI: 10.1016/j.exppara.2015.08.010.
Kowalska-Krochmal B, Dudek-Wicher R. 2021. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 10 (2): 165. DOI: 10.3390/pathogens10020165.
Kumar P, Kizhakkedathu NJ, Straus KS. 2018. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8 (1): 4. DOI: 10.3390/biom8010004.
Liu ZQ, Yang PC. 2012. Construction of pET-32 ? (+) vector for protein expression and purification. N Am J Med Sci 4 (12): 651-655. DOI: 10.4103/1947-2714.104318.
Luong HX, Thanh TT, Tran TH. 2020. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 260: 118407. DOI: 10.1016/j.lfs.2020.118407.
Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. 1997. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biomembranes 1327 (1): 119-130. DOI: 10.1016/s0005-2736(97)00051-5.
Parachin NS, Mulder KC, Viana AAB, Dias SC, Franco OL. 2012. Expression systems for heterologous production of antimicrobial peptides. Peptides 38 (2): 446-456. DOI: 10.1016/j.peptides.2012.09.020.
Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T, Thammasirirak S. 2011. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Dev Comp Immunol 35 (5): 545-553. DOI: 10.1016/j.dci.2010.12.011.
Rezaei-Moshaei M, Dehestani A, Bandehagh A, Pakdin-Parizi A, Golkar M, Heidari-Japelaghi R. 2021. Recombinant pebulin protein, a type 2 ribosome-inactivating protein isolated from dwarf elder (Sambucus ebulus L.) shows anticancer and antifungal activities in vitro. Intl J Biol Macromol 174: 352-361. DOI: 10.1016/j.ijbiomac.2021.01.129.
Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65 (4): 363-372. DOI: 10.1007/s00253-004-1656-9.
Schreiber C, Müller H, Birrenbach O, Klein M, Heerd D, Weidner T, Salzig D, Czermak P. 2017. A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microb Cell Fact 16 (1): 29. DOI: 10.1186/s12934-017-0637-5.
Singh, A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. 2015. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14 (1): 41. DOI: 10.1186/s12934-015-0222-8.
Soleimani M, Mirmohammad-Sadeghi H, Sadeghi-Aliabadi H, Jahanian-Najafabadi A. 2016. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein. Adv Biomed Res 5: 70-70. DOI: 10.4103/2277-9175.180639.
Sørensen HP, Mortensen KK. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115 (2): 113-128. DOI: 10.1016/j.jbiotec.2004.08.004.
Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292 (5820): 246-248. DOI: 10.1038/292246a0.
Tavares LS, Rettore JV, Freitas RM, Porto WF, Duque APdN, Singulani JdL, Silva ON, Detoni MdL, Vasconcelos EG, Dias SC, Franco OL, Santos MdO. 2012. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides 37 (2): 294-300. DOI: 10.1016/j.peptides.2012.07.017.
Tian ZG, Dong TT, Teng D, Yang YL, Wang JH. 2009. Design and characterization of novel hybrid peptides from LFB15(W4,10), HP (2-20), and cecropin A based on structure parameters by computer-aided method. Appl Microbiol Biotechnol 82 (6): 1097-1103. DOI: 10.1007/s00253-008-1839-x.
Uawonggul N, Thammasirirak S, Chaveerach A, Arkaravichien T, Bunyatratchata W, Ruangjirachuporn W, Jearranaiprepame P, Nakamura T, Matsuda M, Kobayashi M, Hattori S, Daduang S. 2007. Purification and characterization of Heteroscorpine-1 (HS-1) toxin from Heterometrus laoticus scorpion venom. Toxicon 49 (1): 19-29. DOI: 10.1016/j.toxicon.2006.09.003.
Ventola CL. 2015. The antibiotic resistance crisis: part 1: Causes and threats. P. T 40 (4): 277-283.
Wibowo D, Zhao CX. 2019. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Applied Microbiol Biotechnol 103 (2): 659-671. DOI: 10.1007/s00253-018-9524-1.
Willyard C. 2017. The drug-resistant bacteria that pose the greatest health threats. Nature 543 (7643): 15. DOI: 10.1038/nature.2017.21550.
Wulanjati MP, Witasari LD, Wijayanti N, Haryanto A. 2021. Recombinant fusion protein expression of Indonesian isolate Newcastle disease virus in Escherichia coli BL21(DE3). Biodiversitas 22: 3249-3255. DOI: 10.13057/biodiv/d220629.
Zhao D, Huang Z. 2016. Effect of His-tag on expression, purification, and structure of zinc finger protein, ZNF191(243-368). Bioing Org Chem Appl 2016: 8206854-8206854. DOI: 10.1155/2016/8206854.
Zhao W, Liu S, Du G, Zhou J. 2019. An efficient expression tag library based on self-assembling amphipathic peptides. Microbial Cell Fact 18 (1): 91. DOI: 10.1186/s12934-019-1142-9.
Zhou L, Zhao Z, Li B, Cai Y, Zhang S. 2009. TrxA mediating fusion expression of antimicrobial peptide CM4 from multiple joined genes in Escherichia coli. Protein Expr Purif 64 (2): 225-230. DOI: 10.1016/j.pep.2008.11.006.

Most read articles by the same author(s)