Suitability habitat model of Mangifera rufocostata under different climatic and environmental conditions

##plugins.themes.bootstrap3.article.main##

ADISTINA FITRIANI
YUDI F. ARIFIN
GUSTI M. HATTA
RAIHANI WAHDAH
DAMARIS PAYUNG

Abstract

Abstract. Fitriani A, Arifin YF, Hatta GM, Wahdah R, Payung D. 2022. Suitability habitat model of Mangifera rufocostata under different climatic and environmental conditions. Biodiversitas 23: 4570-4577. Mangifera rufocostata Kosterm is known as a medicinal plant for antidiabetic. Therefore, intensive use of the bark of this plant results in a significant decline in the plant population which can eventually cause the plant to become extinct. This study aimed to determine the potentially suitable cultivation region of M. rufocostata using Maximum Entropy (MaxEnt) modelling. Twenty-three environmental variables including bioclimatic, soil type, slope, altitude, and solar radiation have been used for the development of distribution modeling. The results showed that precipitation seasonality, precipitation, mean temperature, and solar radiation are important variables in the development of the habitat suitability model. Suitable habitat locations for M. rufocostata include the Hulu Sungai Tengah, Hulu Sungai Selatan and Hulu Sungai Utara Regency, South Kalimantan Province, Indonesia. The MaxEnt model provided an area under curve (AUC) value of 0.959, indicating that MaxEnt is accurate and informative for the prediction of habitat suitability of M. rufocostata. The results indicate that this suitability prediction model may be applied used for future management, monitoring, cultivation and conservation of M. rufocostata.

##plugins.themes.bootstrap3.article.details##

References
Ab Lah NZ, Yusop Z, Hashim M, Mohd Salim J, Numata S. 2021. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests 12. https://doi.org/10.3390/f12111449
Anand V, Oinam B, Singh IH. 2021. Predicting the current and future potential spatial distribution of endangered Rucervus eldii (Sangai) using MaxEnt model. Environ. Monit. Assess. 193: 147. https://doi.org/10.1007/s10661-021-08950-1
Asanok L, Kamyo T, Marod D. 2020. Maximum entropy modeling for the conservation of Hopea odorata in riparian forests, central Thailand. Biodiversitas J Biol Divers 21: 4663-4670. https://doi.org/10.13057/biodiv/d211027
Baek S, Kim M-J, Lee J-H. 2019. Current and future distribution of Ricania shantungensis (Hemiptera: Ricaniidae) in Korea: Application of spatial analysis to select relevant environmental variables for MaxEnt and CLIMEX modeling. Forests 10. https://doi.org/10.3390/f10060490
Boral D, Moktan S. 2021. Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Ecol Processes 10: 26. https://doi.org/10.1186/s13717-021-00294-5
da Silva Sobrinho M, Cavalcante AdMB, Duarte AdS, Sousa GdSd. 2019. Modeling the potential distribution of Mangifera indica: l. Under future climate scenarios in the caatinga biome. Revista Brasileira de Meteorologia 34: 351-358. https://doi.org/10.1590/0102-7786343052
Datta S. 2013. Impact of climate change in Indian horticulture-a review. International Journal of Science, Environment and Technology 2: 661-671.
Durand M, Murchie EH, Lindfors AV, Urban O, Aphalo PJ, Robson TM. 2021. Diffuse solar radiation and canopy photosynthesis in a changing environment. Agricultural and Forest Meteorology 311: 108684. https://doi.org/10.1016/j.agrformet.2021.108684
Eccel E. 2012. Estimating air humidity from temperature and precipitation measures for modelling applications. Meteorol App 19: 118-128.
Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1?km spatial resolution climate surfaces for global land areas. I J Climatol 37: 4302-4315.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climat J R Meteorolog Soc 25: 1965-1978.
Ji W, Han K, Lu Y, Wei J. 2020. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Protect. 137: 105268. https://doi.org/10.1016/j.cropro.2020.105268
Khanum R, Mumtaz A, Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol. 49: 23-31.
Kostermans AJGH, Bompard J-M. 2012. "The Mangoes: Their Botany, Nomenclature, Horticulture and Utilization." Academic Press. London.
Kuhn DN, Dillon N, Bally I, Groh A, Rahaman J, Warschefsky E, Freeman B, Innes D, Chambers AH. 2019. Estimation of genetic diversity and relatedness in a mango germplasm collection using SNP markers and a simplified visual analysis method. Sci Hortic 252: 156-168. https://doi.org/10.1016/j.scienta.2019.03.037
Kulkarni VM, Rathod VK. 2018. Exploring the potential of Mangifera indica leaves extract versus mangiferin for therapeutic application. Agric Nat Resour 52: 155-161. https://doi.org/10.1016/j.anres.2018.07.001
Li YL, Liu XG, Hao K, Yang QL, Yang XQ, Zhang WH, Cong Y. 2019. Light-response curve of photosynthesis and model fitting in leavesof Mangifera indica under different soil water conditions. Photosynthetica 57: 796-803.
Makhmale S, Bhutada P, Yadav L, Yadav B. 2016. Impact of climate change on phenology of mango-the case study. Ecology, Environment and Conservation 22: S127-S132.
Moura MR, Villalobos F, Costa GC, Garcia PC. 2016. Disentangling the role of climate, topography and vegetation in species richness gradients. PLoS One 11: e0152468. https://doi.org/10.1371/journal.pone.0152468
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: An open?source release of Maxent. Ecography 40: 887-893.
Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, Graf R, Bodénès C, Sperisen C, Kremer A, Gugerli F. 2016. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 25: 5907-5924. https://doi.org/10.1111/mec.13889
Sun J, Cheng G, Li W, Sha Y, Yang Y. 2013. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens 5: 1894-1911.
Suwardike P, Rai IN, Dwiyani R, Kriswiyanti E. 2018. Land suitability of mango (Mangifera indica L.) in Buleleng. Agro Bali: Agricultural Journal 1: 1-7.
Swets JA. 1988. Measuring the accuracy of diagnostic systems. Sci 240: 1285-1293.
Taiz L, Zeiger E. 2010. "Plant Physiology." 5th /Ed. Sunderland Sinauer Assoc., Inc. Sunderland, Masschusetts USA.
Team CW. 2007. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC 2007: Climate Change 2007: Synthesis Report 104.
Théry M. 2001. Forest light and its influence on habitat selection. In: Linsenmair KE, Davis AJ, Fiala B, Speight MR (eds.). Tropical Forest Canopies: Ecology and Management: Proceedings of ESF Conference, Oxford University, 12–16 December 1998. Springer Netherlands, Dordrecht.
Vasudea R, Sthapit B, Salma I, Changttragoon S, Arsanti IW, Gerten D, Dum-ampai N, Rajan S, Dinesh MR, Singh IP, Singh SK, Reddy BMC, Parthasarathy VA, Rao VR. 2015. Use values and cultural importance of major tropical fruit trees: An analysis from 24 village sites across South and South-East Asia. Indian J Plant Gen Resour 28: 17-30. http://dx.doi.org/10.5958/0976-1926.2015.00003.0
Velazco SJE, Villalobos F, Galvão F, De Marco Júnior P. 2019. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25: 660-673. https://doi.org/10.1111/ddi.12886
Verstraete MM. 1987. Radiation transfer in plant canopies: Transmission of direct solar radiation and the role of leaf orientation. Journal of Geophysical Research: Atmospheres 92: 10985-10995.
Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B: Biol. 96: 30-37. https://doi.org/10.1016/j.jphotobiol.2009.03.010
Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecol Conserv 16: e00477.
Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK. 2016. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol. Modell. 342: 1-18.
Xu X, Zhang H, Yue J, Xie T, Xu Y, Tian Y. 2018. Predicting shifts in the suitable climatic distribution of walnut (Juglans regia L.) in China: Maximum entropy model paves the way to forest management. Forests 9: 103.
Zhang K, Yao L, Meng J, Tao J. 2018a. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634: 1326-1334. https://doi.org/10.1016/j.scitotenv.2018.04.112
Zhang X, Li G, Du S. 2018b. Simulating the potential distribution of Elaeagnus angustifolia L. based on climatic constraints in China. Ecol. Eng. 113: 27-34.
Zhu G, Gariepy TD, Haye T, Bu W. 2017. Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. J. Pest Sci. 90: 1045-1057.