Variabilities of the carbon storage of mangroves in Gili Meno Lake, North Lombok District, Indonesia

##plugins.themes.bootstrap3.article.main##

SITTI HILYANA
FIRMAN ALI RAHMAN

Abstract

Abstract. Hilyana S, Rahman FA. 2022. Variabilities of the carbon storage of mangroves in Gili Meno Lake, North Lombok District, Indonesia. Biodiversitas 23: 5862-5868. Mangrove is one of the coastal vegetation that can act as carbon mitigation (carbon sink and carbon storage). This study aims to determine the potential for carbon sinks and storage in the leaves and roots of each type of mangrove found in Gili Meno lake, North Lombok, Indonesia. The research includes the identification of species and sampling (leaves and roots) of mangroves in the research quadrant. The organic carbon content of mangrove leaves and roots was tested using the Wakley and Black method. The results showed that there were 5 (five) types of mangroves in Gili Meno lake, namely: Avicennia marina, Lumnitzera racemosa, Bruguiera cylindrica, Rhizophora apiculata, and Excoecaria agallocha. The highest leaf tissue carbon content value was R. apiculata at 45.85%C or equivalent to 3.19 g.C, while in roots, A. marina was 50.06%C, equivalent to 4.49 g.C. In addition, the potential carbon stock in the leaves of the entire mangrove ecosystem in an area of 3 ha is 762.81 tons.C±199.257 and at the roots is 659.76 tons.C±394.848, while the largest potential carbon stock in leaf organs is the type of mangrove R. apiculata, which is 318.91 tons.C.ha-1. and at the root is the type of mangrove A. marina, amounting to 448.54 tons.C.ha-1. The estimated carbon dioxide uptake by the Gili Meno mangrove leaves is in the range of 130.36 g.CO2-168.27 g.CO2 or with an average of 154.34 g.CO2±14.376, while the species with the highest carbon dioxide absorption capacity is R. apiculata (268.27 g.CO2) and the lowest in the species of L. racemosa (130.36 g.CO2).

##plugins.themes.bootstrap3.article.details##

References
Abdelhakeem, S.G., Aboulroos, S.A., Kamel, M.M. 2016. Performance of a vertical subsurface flow constructed wetland under different operational conditions. J Adv Res, 7(5): 803-814. doi: 10.1016/j.jare.2015.12.002
Aksornkoae, S., Kato, S. 2011. Mangroves for the people and environmental conservation in Asia. Bull Soc Sea Water Sci 65 (1): 3-9
Alimbon, J.A., Manseguiao, M.R.S. 2021a. Community knowledge and utilization of mangroves in Panabo Mangrove Park, Panabo City, Davao del Norte, Philippines. Intl J Bonorowo Wetl, 11(2): 51-57. DOI: 10.13057/bonorowo/w110201.
Alimbon, J.A., Manseguiao, M.R.S. 2021b. Species composition, stand characteristics, aboveground biomass, and carbon stock of mangroves in Panabo Mangrove Park, Philippines. Biodiversitas, 22(6): 3130-3137. DOI: 10.13057/biodiv/d220615
Alongi, D.M., Murdiyarso, D., Fourqurean. J.W., Kauffman, J.B., Hutahaean,A., Crooks, S., Wagey, T. 2016. Indonesia’s blue carbon: A globally significant and vulnerable sink for seagrass and mangrove carbon. Wetlands Ecology and Management 24(1): 3-13. DOI:10.1007/s11273-015-9446-y
Asadi. M.A., Yona, D., Saputro, S.E. 2018. Species Diversity, Biomass, and Carbon Stock Assessments of Mangrove Forest in Labuhan, Indonesia. IOP Conf Ser Earth Environ Sci, 151(1): 012009. DOI: 10.1088/1755-1315/151/1/012009
Barreto MB, Lo Mónaco S, Díaz R, Barreto-Pittol E, López L, Peralba M, do CR. 2016. Soil organic carbon of mangrove forests (Rhizophora and Avicennia) of the Venezuelan Caribbean coast. Organic Geochemm, 100: 51-61. DOI: 10.1016/j.orggeochem.2016.08.002
Castillo, J.A.A., Apan, A.A., Maraseni, T.N., Salmo, S.G. 2018. Tree biomass quantity, carbon stock and canopy correlates in mangrove forest and land uses that replaced mangroves in Honda Bay, Philippines. Reg Stud Mar Sci 24: 174-183. doi: 10.1016/j.rsma.2018.08.006
Dahl, M., Deyanova, D., Gütschow, S., Asplund, M.E., Lyimo, L.D., Karamfilov, V., Santos, R., Björk, M., Gullström, M. 2016. Sediment properties as important predictors of carbon storage in Zostera marina meadows: A comparison of four European areas. PLoS One, 11(12): e0167493. doi: 10.1371/journal.pone.0167493
Estrada, G.C.D., Soares, M.L.G. 2017. Global patterns of aboveground carbon stock and sequestration in mangroves. An Acad Bras Cienc 89 (2): 973-989. DOI: 10.1590/0001-3765201720160357
Gao, Y., Zhou, J., Wang, L., Guo, J., Feng, J., Wu, H., Lin, G. 2019. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Glob Ecol Conserv 17: e00575. DOI: 10.1016/j.gecco.2019.e00575.
Giri, C., Long J., Abbas, S., Murali, R.M., Qamer, F.M., Pengra, B., Thau, D. 2015. Distribution and dynamics of mangrove forests of South Asia. J Environ Manag 148: 101-111. DOI: 10.1016/j.jenvman.2014.01.020.
Hamilton, S.E., Casey, D. 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25 (6): 729-738. DOI: 10.1111/geb.12449
Hilmi E, Kusmana C, Suhendang E, Iskandar. 2017. Correlation analysis between seawater intrusion and mangrove greenbelt. Indon J For Res 4 (2): 151-168. DOI: 10.20886/ijfr.2017.4.2.151-168
Hilmi, E., Kusmana, C., Suhendang, E., Iskandar. 2019. The carbon conservation of mangrove ecosystem in Indonesia. Biotropia 26 (3): 1-16. DOI: 10.11598/btb.2019.26.3.1099
Howard, J., Hoyt, S., Isensee, K., Telszewski, M., Pidgeon, E. 2014. Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA.
Irsadi, A., Matuti, N.K.T., Nugraha, S.B. 2017. Estimasi Stok Karbon Mangrove Di Dukuh Tapak Kelurahan Tugurejo Kota Semarang. Jurnal Sainteknol 15(2): 120-127. DOI:10.15294/sainteknol.v15i2.12402. [Indonesian]
Kathiresan, K., Anburaj, R., Gomathi, V., Saravanakumar, K. 2013. Carbon sequestration potential of Rhizophora mucronata and Avicennia marina as influenced by age, season, growth and sediment characteristics in southeast coast of India. J Coast Conserv 17 (3): 397-408. DOI: 10.1007/s11852-013-0236-5.
Kida, M., Fujitake, N. 2020. Organic carbon stabilization mechanisms in mangrove soils: A review. Forests 11 (9): 981. DOI: 10.3390/f11090981
Kusumaningtyas, M.A., Hutahaean, A.A., Fischer, H.W., Pérez-mayo, M., Ransby, D., Jennerjahn, T.C. 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar Coast Shelf Sci 218: 310-323. DOI: 10.1016/j.ecss.2018.12.007
Lunstrum, A., Chen, L. 2014. Soil carbon stocks and accumulation in young mangrove forests. Soil Biol Biochem 75: 223-232. DOI: 10.1016/j.soilbio.2014.04.008
Mandari, D.Z., Gunawan, H., Isda, M.N. 2016. Penaksiran Biomassa dan Karbon Tersimpan pada Ekosistem Hutan Mangrove di Kawasan Bandar Bakau Dumai. Jurnal Riau Biologia 1(3): 17-23. [Indonesian]
Martuti, N.K.T., Setyowati, D.L., Nugraha, S.B., Mutiatari, D.P. 2017. Carbon stock potency of mangrove ecosystem at Tapak Sub-village, Semarang, Indonesia. AACL Bioflux 10(6): 1524-1533
Matatula, J., Afandi, AY., Wirabuana, P.Y.A.P. 2021. Short communication: Comparison of stand structure, species diversity and aboveground biomass between natural and planted mangroves in Sikka, East Nusa Tenggara, Indonesia. Biodiversitas 22 (3): 1098-1103. DOI: 10.13057/biodiv/d220303.
Matsui, N., Meepol, W., Chukwamdee, J. 2015. Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions. J Mar Sci Eng 3(4): 1404-1424. DOI: 10.3390/jmse3041404.
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10): 552-560.
Murdiyarso, D., Purbopuspito, J., Kauffman, J.B., Warren, M.W., Sasmito, S.D., Donato, D.C, Manuri, S., Krisnawati, H., Taberima, S., Kurnianto, S. 2015. The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Change 5(12): 1089-1092. DOI: 10.1038/nclimate2734.
Murray, B.C., Pendleton, L., Jenkins, W.A., Sifleet, S. 2011. Green Payments for Blue Carbon: Economic Incentives for Protecting Threatened Coastal Habitats. North Carolina (US): Duke University Pr. 42 hlm.
Nordhaus, I., Toben, M., Fauziyah, A. 2019. Impact of deforestation on mangrove tree diversity, biomass and community dynamics in the Segara Anakan lagoon, Java, Indonesia: A ten-year perspective. Estuar Coast Shelf Sci 227: 106300. DOI: 10.1016/j.ecss.2019.106300.
Nyanga, C. 2020. The Role of Mangroves Forests in Decarbonizing the Atmosphere. In Carbon-Based Material for Environmental Protection and Remediation. IntechOpen.
Pendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Aaron, J.W., Sifleet, S., Craft, C., Fourqurean, J.W., Kauffman, J.B., Marba, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., Baldera, A. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7: e43542. DOI: 10.1371/journal.pone.0043542.
Pérez, A., Libardoni, B.G., Sanders, C.J. 2018. Factors influencing organic carbon accumulation in mangrove ecosystems. Biol Lett 14(10): 20180237. DOI: 10.1098/rsbl.2018.0237.
Prasad, M.B.K., Dittmar, T., Ramanathan, A.L. 2010. Organic matter and mangrove productivity. In: Ramanathan, A.L., Bhattacharya, P., Dittmar, T., Prasad, M.B.K., Neupane, B.R. (eds) Management and Sustainable Development of Coastal Zone Environments, Springer, Dordrecht. DOI: 10.1007/978-90-481-3068-9_12.
Purwanto, R.H., Mulyana, B., Sari, P.I, Hidayatullah, M.F., Marpaung, A.A., Putra, I.S.R., Putra, A.G. 2021. The environmental services of Pangarengan mangrove forest in Cirebon, Indonesia: conserving biodiversity and storing carbon. Biodiversitas 22(12): 5609-5616. DOI: 10.13057/biodiv/d221246
Rahman, F.A., Hadi, A.P. 2021. Kandungan C-Organik Substrat Ekosistem Mangrove Di Danau Air Asin Gili Meno Kabupaten Lombok Utara. Jurnal Bioscientist:Jurnal Ilmiah Biologi. 9(2): 516-526. doi: 10.33394/bioscientist.v9i2.4276. [Indonesian]
Rahman, F.A., Qayim, I., Wardiatno, Y. 2018. Carbon storage variability in seagrass meadows of Marine Poton Bako, East Lombok, West Nusa Tenggara, Indonesia. Biodiversitas 19(5): 1626-1631. DOI: 10.13057/biodiv/d190505.
Rahman, F.A., Rohyani, I.S., Suripto, Hadi, A.P., Lestari, D.P. 2020. Analisis Kualitas Perairan Terhadap Kemelimpahan Strata Pertumbuhan Vegetasi Mangrove di Teluk Sereweh, Kabupaten Lombok Timur, Nusa Tenggara Barat (pp 35-43). Mataram, Indonesia: Prosiding Seminar Nasional Forum Ilmiah Pengelolaan Perikanan Berkelanjutan Nusa Tenggara Barat 2019. [Indonesian]
Rozainah, M.Z., Nazri, M.N., Sofawi, A.B., Hemati, Z., Juliana, W.A. 2018. Estimation of carbon pool in soil, above and below ground vegetation at different types of mangrove forests in Peninsular Malaysia. Mar Pollut Bull 137: 237-245. DOI: 10.1016/j.marpolbul.2018.10.023.
Saderne, V., Geraldi, N.R., Macreadie, P.I., Maher, D.T., Middelburg, J.J., Serrano, O., et al. 2019. Role of carbonate burial in Blue Carbon budgets. Nat Commun 10(1). 1106. DOI: 10.1038/s41467-019-08842-6.
Sadono, R., Soeprijadi, D., Susanti, A., Matatula, J., Pujiono, E., Idris, F., Wirabuana, P.Y.A.P. 2020. Local indigenous strategy to rehabilitate and conserve mangrove ecosystem in the southeastern Gulf of Kupang, East Nusa Tenggara, Indonesia. Biodiversitas 21(3): 1250-1257. DOI: 10.13057/biodiv/d210353.
Scales, I.R., Friess, D.A. 2019. Patterns of mangrove forest disturbance and biomass removal due to small-scale harvesting in southwestern Madagascar. Wetlands Ecol Manag 27 (5): 609-625. DOI: 10.1007/s11273-019-09680-5.
Shannon, M.C. 1999. Salinity and horticulture. An International Journal. The International Society for Horticultural. Science 78: 1-4.
Sheil, D., Eastaugh, C.S., Vlam, M., Zuidema, P.A., Groenendijk, P., van der Sleen, P., Jay, A., Vanclay, J. 2017. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct Ecol 31(3): 568-581. DOI: 10.1111/1365-2435.12775.
Taillardat, P., Friess, D.A., Lupascu, M. 2018. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biology Letters 14(10): 20180251. DOI: 10.1098/rsbl.2018.0251.
Tam, N.F.Y., Wong, A.H.Y., Wong, M.H., Wong, Y.S. 2009. Mass balance of nitrogen in constructed mangrove wetlands receiving ammonium-rich wastewater: Effects of tidal regime and carbon supply. Ecol Eng 35(4): 453-462. DOI: 10.1016/j.ecoleng.2008.05.011.
Wang, J., Bai, J., Zhao, Q., Lu, Q., Xia, Z. 2016. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta. Sci Rep 6: 21137. doi: 10.1038/srep21137.
Weiss, C., Weiss, J., Boy, J., Iskandar, I., Mikutta, R., Guggenberger, G. 2016. Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N. Ecol Evol 6(14): 5043-5056. DOI: 0.1002/ece3.2258.
Widyastuti, A., Yani, E., Nasution, E.K., Rochmatino. 2018. Diversity of mangrove vegetation and carbon sink estimation of Segara Anakan Mangrove Forest, Cilacap, Central Java, Indonesia. Biodiversitas 19(1): 246-252. DOI: 10.13057/biodiv/d190133.
Worthington, T., Spalding, M. 2018. Mangrove Restoration Potential: A global map highlighting a critical opportunity.https://doi.org/10.17863/CAM.39153.
Zhang, C.G., Leung, K.K., Wong, Y.S., Tam, N.F.Y. 2007. Germination, growth and physiological responses of mangrove (Bruguiera gymnorrhiza) to lubricating oil pollution. Environ Exp Bot 60(1): 127-133. DOI: 10.1016/j.envexpbot.2006.09.002