The influence of fermentation using marine yeast Hortaea werneckii SUCCY001 on antibacterial and antioxidant activity of Gracilaria verrucosa




Abstract. Fatmawati F, Sibero T, Trianto A, Wiyanti DP, Sabdono A, Pronggenies D, Radjasa OK. 2022. The influence of fermentation using marine yeast Hortaea werneckii SUCCY001 on antibacterial and antioxidant activity of Gracilaria verrucosa. Biodiversitas 23: 5258-5266. Gracilaria verrrucosa is producer of agar, a polysaccharide, that widely used in pharmaceutical and food industries. However, several studies have shown that the secondary metabolite of this seaweed is not potential as an antimicrobial and antioxidant agents. This study aimed to determine the antibacterial and antioxidant properties of methanolic extract of G. verrucosa after fermentation using marine yeast Hortaea werneckii SUCCY001. The samples were fermented based on different optimization times, specially in three, six and nine days. Samples were extracted using methanol by maceration method. Then the extracts were tested for antimicrobial potential against the several human clinical pathogens namely Bacillus cereus, Bacillus subtilis, Escherichia coli, Micrococcus luteus and Pseudomonas aeruginosa. The antioxidant potential was analyzed using the 1,1-diphenyl-2-picrylhydracyl (DPPH) and 2,2-Azinobis 3-ethyl benzothiazoline 6- sulfonic acid (ABTS) method while total phenolic content (TPC) was measured using Folin-Ciocalteu. Secondary metabolites were characterized using thin layer chromatography (TLC) and GC-MS. TLC plate visualization using UV light, DPPH, FeCl3 and vanillin-sulfuric acid  reagents. The results showed that the extract fermented for nine days was able to inhibit the growth of P. aeruginosa and M. luteus at a concentration of 2 mg/mL. The highest antioxidant activity was found in the nine days fermented extract with an RSA value of 21.9% ± 0,0001 for DPPH and 12.53 % ± 0.002 for ABTS. Furthermore, the highest total phenolic content was found in the nine days fermented extract of 7.57 GAE/mg. The results of characterization using TLC showed the presence of phenolic compounds, terpenoids and antioxidants in fresh seaweed extracts, autoclaved fresh seaweed, three days of fermentation, six days and nine days. Based on this research, it can be seen that the addition of marine yeast starter H. werneckii SUCCY001 was able to increase the antibacterial and antioxidant activity of G. verrucosa.


Achinas S, Charalampogiannis N, Euverink GJW. 2019. Brief Recap for Bacteria Adhesion. Applied Siences 9: 1–15.
Akpalo, AE, Saloufou IK, Eloh K, Kpegba K. 2020. Wound healing biomolecules present in four proposed soft aqueous extractions of Ageratum conyzoides Linn. International Journal of Biological and Chemical Sciences 14(2): 638–651. DOI: 10.4314/ijbcs.v14i2.26
Amatulloh Z, Mulyani Y, Dewanti P, Haetami K. 2021. Growth Characteristics and Tracing Antagonistic Properties of Bacillus flexus and Bacillus subtilis as Antibacterials to Overcome the Attack of Aeromonas hydrophila Bacteria on Fish. World Scientific News 158: 91–104.
Asif HM, Ishfaq U, Sohail S, Izhar M, Rafeeq H, Hayder MA, Sabtain T, Hussain A. 2021. A Review on Natural Antioxidants in Foods and New Insights on Animal Body Compounds, Role, Production and Future Perspectives. Saudi Journal of Medical and Pharmaceutical Sciences 7(1): 20–25. DOI: 10.36348/sjmps.2021.v07i01.004
Atta EM, Mohamed NH, Abdelgawad AAM. 2017. Antioxidants: an Overview on the Natural and Synthetic Types. European Chemical Bulletin 6(8): 365. DOI: 10.17628/ecb.2017.6.365-375
Azizah N, Al-baarri AN, Mulyani S. 2012. Pengaruh Lama Fermentasi Terhadap Kadar Alkohol, pH, dan Produksi Gas pada Proses Fermentasi Bioetanol dari Whey dengan Substitusi Kulit Nanas. Jurnal Aplikasi Teknologi Pangan 1(2): 72–77.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2): 71–79. DOI: 10.1016/j.jpha.2015.11.005
Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. 2018. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 14 (11). DOI: 10.1007/s11306-018-1449-2
Borges L, Da S, Lima GPP, Artés F, de Souza ME, Freitas, L de S, de Jesus HI, Santos, N de FA, Melo MR da S. 2019. Efficiency of DPPH and FRAP assays for estimating antioxidant activity and separation of organic acids and phenolic compounds by liquid chromatography in fresh-cut nectarine. Australian Journal of Crop Science 13(7): 1053–1060. DOI: 10.21475/ajcs.19.13.07.p1368
Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. 2013. Benefits of polyphenols on gut microbiota and implications in human health. Journal of Nutritional Biochemistry 24(8): 1415–1422. DOI: 10.1016/j.jnutbio.2013.05.001
Cascais M, Monteiro P, Pacheco D, Cotas J, Pereira L, Marques JC, Gonçalves AMM. 2021. Effects of heat treatment processes: Health benefits and risks to the consumer. Applied Sciences (Switzerland) 11(18). DOI: 10.3390/app11188740
Chakraborty K, Joseph D, Praveen NK. 2015. Antioxidant activities and phenolic contents of three red seaweeds (Division: Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. Journal of Food Science and Technology 52(4): 1924–1935. DOI: 10.1007/s13197-013-1189-2
Daud AD, Azman NS, Alias NIA, Syaifudin N, Harun A, Aziz NA. 2021. Phytochemical and antibacterial properties on three medicinal plants for potent anti-soft rot agents. Malaysian Journal of Analytical Sciences 25(1): 119–128.
de Torre MP, Cavero RY, Calvo MI, Vizmanos JLW. 2019. A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants 8(5): 1–11. DOI: 10.3390/antiox8050142
Feng R, Chen L, Chen K. 2018. Fermentation trip: amazing microbes, amazing metabolisms. Annals of Microbiology 68(11): 717–729. DOI: 10.1007/s13213-018-1384-5
G?secka M, Siwulski M, Magdziak Z, Budzy?ska S, Stuper-Szablewska K, Niedzielski P, MLeczek M. 2020. The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. Journal of Food Science and Technology 57(2): 513–525. DOI: 10.1007/s13197-019-04081-1
Gogoi J, Nakhuru KS, Policegoudra RS, Chattopadhyay P, Rai AK, Veer V. 2016. Isolation and characterization of bioactive components from Mirabilis jalapa L. radix. Journal of Traditional and Complementary Medicine 6(1): 41–47. DOI: 10.1016/j.jtcme.2014.11.028
Gomes L, Monteiro P, Cotas J, Gonçalves AMM, Fernandes C, Gonçalves T, Pereira L. 2022. Seaweeds’ pigments and phenolic compounds with antimicrobial potential. Biomolecular Concepts 13(1): 89–102. DOI: 10.1515/bmc-2022-0003
Gori A, Boucherle B, Rey A, Rome M, Fuzzati N, Peuchmaur M. 2021. Development of an innovative maceration technique to optimize extraction and phase partition of natural products. Fitoterapia 148. DOI: 10.1016/j.fitote.2020.104798
Gunathilake T, Akanbi TO, Suleria HAR, Nalder TD, Francis DS, Barrow CJ. 2022. Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. 1–50.
Hodhod MSED, Gaafar ARZ, Alshameri A, Qahtan AA, Noor A, Abdel-Wahab M. 2020. Molecular characterization and bioactive potential of newly identified strains of the extremophilic black yeast Hortaea werneckii isolated from Red Sea mangrove. Biotechnology and Biotechnological Equipment 34(1): 1288–1298. DOI: 10.1080/13102818.2020.1835535
Huynh NT, Van CJ, SmaggheG, Raes K. 2014. Improved release and metabolism of flavonoids by steered fermentation processes: A review. International Journal of Molecular Sciences 15(11): 19369–19388. DOI: 10.3390/ijms151119369
Ilyasov IR, Beloborodov VL, Selivanova IA, Terekhov RP. 2020. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences 21(3). DOI: 10.3390/ijms21031131
Kasanah N, Triyanto, Seto DS, Amelia W, Isnansetyo A. 2015. Review antibacterial compounds from red seaweeds (Rhodophyta). Indonesian Journal of Chemistry 15(2): 201–209. DOI: 10.22146/ijc.21215
Kumar M, Prakash S, Radha, Kumari N, Pundir A, Punia S, Saurabh V, Choudhary P, Changan S, Dhumal S, Pradhan PC, Alajil O, Singh S, Sharma N, Ilakiya T, Singh S, Mekhemar M. 2021. Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants 10(7): 1–32. DOI: 10.3390/antiox10071061
Lomartire S, Cotas J, Pacheco D, Marques JC, Pereira L, Gonçalves AMM. 2021. Environmental impact on seaweed phenolic production and activity: An important step for compound exploitation. Marine Drugs 19(5): 1–20. DOI: 10.3390/md19050245
Maftuch, Kurniawati I, Adam A, Zamzami I. 2016. Antibacterial effect of Gracilaria verrucosa bioactive on fish pathogenic bacteria. Egyptian Journal of Aquatic Research 42(4): 405–410. DOI
Maicas S. 2020. The role of yeasts in fermentation processes. Microorganisms 8(8): 1–8. DOI: 10.3390/microorganisms8081142
Mailoa MN, Mahendradatta M, Djide N. 2014. Antimicrobial activities of tannins extract from guava leaves on pathogens microbial. The International Asian Research Journal 2(1): 43–50.
Muthukrishnan S, Raja P. 2021. Immunostimulant Effect of Seaweeds in Channa punctatus Challenged by Aeromonas hydrophila. Journal of Drug Delivery and Therapeutics 11(4): 20–23. DOI: 10.22270/jddt.v11i4.4948
Naufal I, Nurhayati A, Rizal A, Maulina I, Handaka SAA. 2022. Feasibility Analysis of Seaweed, Gracilaria sp., Cultivation in Polyculture System In Ponds: A Case Study From Domas Village, Pontang Serang Banten, Indonesia. Asian Journal of Fisheries and Aquatic Research 16(1): 1–11. DOI: 0.9734/ajfar/2022/v16i130361
Nazarudin MF, Alias NH, Sharifuddin N, Abidin AZ, Ahmad MI, Mazli NAIN, Natrah I, Aliyu-Paiko M, Isha A. 2021. Preliminary evaluation of the biochemical and antioxidant properties of seaweed species predominantly distributed in peninsular malaysia. Journal of Fisheries and Environment 45(2): 119–133.
Obata O, Akunna J, Bockhorn H, Walker G. 2016. Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol 2(1): 134–145. DOI: 10.1515/bioeth-2016-0010
Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D. 2017. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry 235: 34–44. DOI: 10.1016/j.foodchem.2017.05.033
Prestinaci F, Pezzotti P, Pantosti A. 2015. Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health 109(7): 309–318. DOI: 10.1179/2047773215Y.0000000030
Rani MHS, Ramesh T, Subramanian J, Kalaiselvam M. 2013. Production and Characterization of Melanin Pigment from Halophilic Black Yeast Hortaea werneckii. International Journal of Pharma Research & Review 2(8): 9–17.
Rogalski E, Ehrmann MA, Vogel RF. 2021. Strain-specific interaction of Fructilactobacillus sanfranciscensis with yeasts in the sourdough fermentation. European Food Research and Technology, 247(6): 1437–1447.
Rusli A, Metusalach, Tahir MM, Salengke, Syamsuar. 2016. Analysis of bioactive compounds of Caulerpa recemosa, sargassum sp. and gracillaria verrucosa using different solvents. Jurnal Teknologi 78(4–2): 15–19. DOI: 10.11113/jt.v78.8146
Saleh H, Abdelrazak A, Elsayed A, El-Shishtawy H, Osman Y. 2018. Optimizing production of a biopesticide protectant by black yeast. Egyptian Journal of Biological Pest Control 28(1): 1–12. DOI 10.1186/s41938-018-0078-4
Sami FJ, Soekamto NH, Firdaus, Latip J, Nur S. 2020. Antibacterial activity and total phenol contents of Sargassum polycystum extract against Escherichia coli and Staphylococcus aureus. Plant Cell Biotechnology and Molecular Biology 21(43–44): 1–7.
Setiabudi A, Pringgenies D, Ridlo A. 2020. Aktivitas Penangkapan Radikal Bebas DPPH dan Daya Reduksi Ekstrak Gracilaria verrucosa. JRST (Jurnal Riset Sains Dan Teknologi) 4(2): 47. DOI: 10.30595/jrst.v4i2.5761
Shahidi F, Zhong Y. 2015. Measurement of antioxidant activity. Journal of Functional Foods 18: 757–781. DOI: 10.1016/j.jff.2015.01.047
Sibero MT, Zilda DS, Haryanti D, Igarashi Y. 2021. Astrogorgia sp. From Saparua, Maluku: Phytochemical Content, Antimicrobial, Antioxidant, and Cytotoxicity Properties; IOP Conference Series: Earth and Environmental Science 750(1). DOI: 10.1088/1755-1315/750/1/012062
Sibero MT, Bachtiarini TU, Trianto A, Lupita AH, Sari DP, Igarashi Y, Harunari E, Sharma AR, Radjasa OK, Sabdono A. 2019. Characterization of a yellow pigmented coral-associated bacterium exhibiting anti-Bacterial Activity Against Multidrug Resistant (MDR) Organism. Egyptian Journal of Aquatic Research 45(1): 81–87. DOI 10.1016/j.ejar.2018.11.007
Sibero MT, Frederick EH, Sabdono A, Wijayanti DP, Pringgenies D, Radjasa OK, Zilda DS, Murwani R. 2022. First report of seaweed-associated yeast from Indonesia: Species composition and screening of their polysaccharides-degrading enzymes. Biodiversitas 23(3): DOI: 10.13057/biodiv/d230327
Sibero MT, Siswanto AP, Murwani R, Frederick EH, Wijaya AP, Syafitri E, Farabi K, Saito S, Igarashi Y. 2020. Antibacterial, cytotoxicity and metabolite profiling of crude methanolic extract from andaliman (Zanthoxylum acanthopodium) fruit. Biodiversitas 21(9): 4147–4154. DOI: 10.13057/biodiv/d210928
Sibero MT, Siswanto AP, Pribadi R. Sabdono A, Radjasa OK, Trianto A, Frederick EH, Wijaya AP, Haryanti D, Triningsih DW, Hayuningrat SJ, Igarashi Y. 2020. The effect of drying treatment to metabolite profile and cytotoxic potential of Rhizophora apiculata leaves. Biodiversitas 21(5): 2180–2187. DOI: 10.13057/biodiv/d210546
Simamora A, Santoso AW, Rahayu I, Timotius KH. 2020. Chromatographic (TLC) Fingerprinting, Antioxidant, ?Glucosidase, and Lipase Inhibitory Activities of Ethanol Extract of Muntingia calabura L. Fruits. Journal of HerbMed Pharmacology 9(4): 346–354.
Sridhar K, Charles AL. 2019. In vitro antioxidant activity of Kyoho grape extracts in DPPH [rad] and ABTS [rad] assays: Estimation methods for EC 50 using advanced statistical programs. Food Chemistry 275: 41–49. DOI: 10.1016/j.foodchem.2018.09.040
Torres FAE, Passalacqua TG, Velásquez AMA, de Souza RA, Colepicolo P, Graminha MAS. 2014. New drugs with antiprotozoal activity from marine Algae: A review. Revista Brasileira de Farmacognosia 24(3): 265–276. DOI: 10.1016/j.bjp.2014.07.001
Toshkova-Yotova T, Georgieva A, Iliev I, Alexandrov S, Ivanova A, Pilarski P, Toshkova R. 2022. Antitumor and antimicrobial activity of fatty acids from green microalga Coelastrella sp. BGV. South African Journal of Botany 000. DOI: 10.1016/j.sajb.2022.04.003
Vermeersch L, Perez-Samper G, Cerulus B, Jariani A, Gallone B, Voordeckers K, Steensel J, Verstrepen KJ. 2019. On the duration of the microbial lag phase. Current Genetics 65(3): 721–727. DOI: 10.1007/s00294-019-00938-2
Viana da Silva M, Santos MRC, Alves Silva IR, Macedo Viana EB, Dos Anjos DA, Santos IA, Barbosa de Lima NG, Wobeto C, Jorge N, Lannes SCDS. 2021. Synthetic and Natural Antioxidants Used in the Oxidative Stability of Edible Oils: An Overview. Food Reviews International 00(00): 1–24. DOI: 10.1080/87559129.2020.1869775
Wang J, Yue, Y De, Tang F, Sun J. 2012. TLC screening for antioxidant activity of extracts from fifteen bamboo species and identification of antioxidant flavone glycosides from leaves of bambusa textilis mcclure. Molecules 17(10): 12297–12311. DOI: 10.3390/molecules171012297
Widodo RW, Subagiyo S, Pramesti R. 2019. Aktivitas Antibakteri Ekstrak Metanol Rumput Laut Gracilaria verrucosa, Greville, 1830 (Florideophyceae?: Gracilariaceae) di Balai Besar Perikanan Budidaya Air Payau Jepara. Journal of Marine Research 8(3): 285–290. DOI: 10.14710/jmr.v8i3.25271
Wijaya AP, Sabdono A, Sibero MT, Trianto A, Radjasa OK. 2022. Antimicrobial activity of nudibranch Chromodoris lineolata associated bacteria against skin diseases pathogens from Jepara Coastal Waters, Indonesia. Biodiversitas 23(4): 1911–1919. DOI: 10.13057/biodiv/d230425
Xiang H, Sun-Waterhouse D, Waterhouse GIN, Cui C, Ruan Z. 2019. Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness 8(3): 203–243. DOI: 10.1016/j.fshw.2019.08.003

Most read articles by the same author(s)

1 2 3 4 > >>