Musculoskeletal structure of the shoulder and arm in large flying fox (Pteropus vampyrus)
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Cahyadi DD, Nurhidayat, Nisa’ C, Supratikno, Novelina S, Setijanto H, Agungpriyono S. 2022. Musculoskeletal structure of the shoulder and arm in large flying fox (Pteropus vampyrus). Biodiversitas 23: 5902-5913. The flight activity of bats is the most energy-consuming activity compared to other locomotion activities. The anatomical characteristic of its musculoskeletal system is believed to play important role in their flight ability. The present study aimed to describe the musculoskeletal morphology of the shoulder, arms, and wing of the large flying fox (Pteropus vampyrus). In this study, the parameters used are observing the specific body parts of the shoulder and arm skeletons and muscles, comparing skeletons and muscles of the other species of bats and related literature. The arm and wing skeleton of the large flying fox were relatively simple, lengthened, and flexible at the distal end of the distal most phalanx, demonstrating the flexibility of a flying fox’s arm and wing during flight. The muscles involved in flying movement that moved the wings, either in adduction or in abduction. The muscles that play a role in the wing adduction phase of the large flying fox are musculi (mm.) pectorales, musculus (m.) serratus ventralis thoracis, m. clavodeltoideus, and m. biceps brachii caput coracoideus. Conversely, the wing abduction phase is played by several main muscles, such as m. clavotrapezius, m. acromiotrapezius, m. latissimus dorsi, m. teres major, m. acromiodeltoideus, m. spinodeltoideus, m. triceps brachii caput laterale, and m. triceps brachii caput longum. Briefly, the musculoskeletal characteristics of the shoulder and arms of the large flying fox are suggested as morphological adaptation to allow free shoulder area movement, reduce the body mass, and resist the large torsional stress in the wing.
##plugins.themes.bootstrap3.article.details##
References
[ICVGAN] International Committee on Veterinary Gross Anatomical Nomenclature. 2017. Nomina Anatomica Veterinaria. 6th Edition. www.wava-amav.org/wava-documents.html.
Alerstam T, Bäckman J. 2018. Ecology of animal migration. Curr Biol 28:R968-R972. DOI: 10.1016/j.cub.2018.04.043.
Argot C. 2001. Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the paleocene marsupials Myulestes ferox and Pucadelphys andinus. J Morphol 247:51-79. DOI: 10.1002/1097-4687(200101)247:1<51:AID-JMOR1003>3.0.CO;2-%23.
Aziz SA, McConkey KR, Tanalgo K, Sritongchuay T, Low M-R, Yong JY, Mildenstein TL, Nuevo-Diego CE, Lim VC and Racey PA. 2021. The critical importance of old world fruit bats for healthy ecosystems and economies. Front Ecol Evol 9:641411. DOI: 10.3389/fevo.2021.641411.
Bahlman JW, Price-Waldman RM, Lippe HW, Breuer KS, Swartz SM. 2016. Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings. J Anat 229:114-127. DOI: 10.1111/joa.12457.
Bale R, Hao M, Bhalla A, Patankar N. 2014. Energy efficiency and allometry of movement of swimming and flying animals. Proc Natl Acad Sci 111:7517–7521. DOI: 10.1073/pnas.1310544111.
Bates P, Francis C, Gumal M, Bumrungsri S, Walston J, Heaney L, Mildenstein T. 2008. Pteropus vampyrus. The IUCN Red List of Threatened Species 2008: e.T18766A8593657. DOI: 10.2305/IUCN.UK.2008.RLTS.T18766A8593657.en.
Boettcher ML, Leonard KC, Dickinson E, Herrel A, Hartstone-Rose A. 2019. Extraordinary grip strength and specialized myology in the hyper-derived hand of Perodicticus potto? J Anat 235:931-939. DOI: 10.1111/joa.13051.
Cao T, Jin JP. 2020. Evolution of flight muscle contractility and energetic efficiency. Front Physiol 11:1038. DOI: 10.3389/fphys.2020.01038.
Garcia JFV, Parra JED, Rios JB. 2015. Anatomical description of white-footed tamarín (Saguinus leucopus Günther, 1877) brachioradialis muscle, and the finding of an accessory head as an anatomical variant. Int J Morphol 33:169-172. DOI: 10.4067/S0717-95022015000100027.
Gómez M, Casado A, De Diego M, Pastor JF, Potau JM. 2022. Anatomical and molecular analyses of the deltoid muscle in chimpanzees (Pan troglodytes) and modern humans (Homo sapiens): Similarities and differences due to the uses of the upper extremity. American Journal of Primatology, 84, e23390. DOI: 10.1002/ajp.23390.
Gómez M, Casado A, De Diego M, Arias-Martorell J, Pastor JF, Potau JM. 2020. Quantitative shape analysis of the deltoid tuberosity of modern humans (Homo sapiens) and common chimpanzees (Pan troglodytes). Ann Anat 230:151505. DOI: 10.1016/j.aanat.2020.151505.
Heard D. 2014. Chiropterans (Bats). In: West G, Heard D, Caulkett N (eds) Zoo Animal and Wildlife Immobilization and Anesthesia, 2nd Ed, pp. 543–550. DOI: 10.1002/9781118792919.ch36. John Wiley & Sons, New York.
Hedenström A, Johansson LC. 2015. Bat flight: aerodynamics, kinematics and flight morphology. J Exp Biol 218:653–663. DOI: 10.1242/jeb.031203.
Hengjan Y, Saputra V, Mirsageri M, Pramono D, Kasmono S, Basri C, Ando T, Ohmori Y, Agungpriyono S, Hondo E. 2018. Nighttime behavioral study of flying foxes on the southern coast of West Java, Indonesia. J Vet Med Sci 80:1146-1152. DOI:10.1292/jvms.17-0665.
Hermanson JW, Altenbach JS. 1983. The functional anatomy of the shoulder of the pallid bat, Antrozous pallidus. J Mammal 64:62–75. DOI: 10.2307/1380751.
Hermanson JW, Altenbach JS. 1985. Functional anatomy of the shoulder and arm of the fruit-eating bat Artibeus jamaicensis. J Zool 205:157-177. DOI: 10.1111/j.1469-7998.1985.tb03526.x.
Hermanson JW. 1981. Functional morphology of the clavicle in the pallid bat, Antrozous pallidus. J Mammal 62(4):801-805. DOI: 10.2307/1380601.
Junior PS, dos Santos LMRP, Nogueira DMP, Abidu-Figueiredo M, Santos ALQ. 2015. Occurrence and morphometrics of the brachioradialis muscle in wild carnivorans (Carnivora: Caniformia, Feliformia). Zoologia 32:23–32. DOI: 10.1590/S1984-46702015000100004.
Lei M dan Dong D. 2016. Phylogenomic analyses of bat subordinal relationships based on transcriptome data. Sci Rep 6:27726. DOI:10.1038/srep27726.
Luis AD, Hayman DTS, O’Shea TJ, Cryan PM, Gilbert AT, Pulliam JRC, Mills JN, Timonin ME, Willis CK, Cunningham AA, Fooks AR, Rupprecht CE, Wood JLN, Webb CT. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Biol Sci 280: 20122753. DOI: 10.1098/rspb.2012.2753.
Matsuo T, Morita F, Tani D, Nakamura H, Higurashi Y, Ohgi J, Luziga C, Wada N. 2019. Anatomical variation of habitat-related changes in scapular morphology. Anat Histol Embryol 48:218-227. DOI:10.1111/ahe.12426.
McMasters J. 2004. The biomechanics of flight: many possible solutions looking for problems. Int J Eng Educ 20(3):398-404.
Norberg UM. 1972. Functional osteology and myology of the wing of the dog-faced bat Rousettus aegyptiacus (É. Geoffroy) (mammalia, chiroptera). Z Morphol Tiere 73:1-44. DOI: 10.1007/BF00418146.
Oleksy R, Racey PA, Jones G. 2015. High-resolution GPS tracking reveals habitat selection and the potential for long-distance seed dispersal by Madagascan flying foxes Pteropus rufus. Global Ecology and Conservation 3:678-692. DOI: 10.1016/j.gecco.2015.02.012.
Oleksy RZ, Ayady CL, Tatayah V, Jones C, Howey PW, Froidevaux JSP, Racey PA, Jones G. 2019. The movement ecology of the Mauritian flying fox (Pteropus niger): a long-term study using solar-powered GSM/GPS tags. Mov Ecol 7, 12 (2019). DOI: 10.1186/s40462-019-0156-6.
Panyutina AA, Korzun LP, Kuznetsov AN. 2015. Flight of Mammals: From Terrestrial Limbs to Wings. Springer, Heidelberg.
Panyutina AA, Kuznetsov AN, Korzun LP. 2013. Kinematics of chiropteran shoulder girdle in flight. Anat Rec 296:382-394. DOI: 10.1002/ar.22650.
Robertson AMB, Biewener AA. 2012. Muscle function during takeoff and landing flight in the pigeon (Columba livia). J Exp Biol 215:4104-4114. DOI:10.1242/jeb.075275.
Sánchez HL, Rafasquino ME, Portiansky EL. 2019. Comparative anatomy of the forearm and hand of wildcat (Leopardus geoffroyi), ocelot (Leopardus pardalis) and jaguar (Panthera onca). J Morphol Sci 36:7–13. DOI: 10.1055/s-0039-1681016.
Sánchez MS, Carrizo LV. 2021. Forelimb bone morphology and its association with foraging ecology in four families of neotropical bats. J Mammal Evol 28:99–110. DOI: 10.1007/s10914-020-09526-5.
Sendow I, Ratnawati A, Taylor T, Adjid RMA, Saepulloh M, Barr J, Wong F, Daniels P, Field H. 2013. Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia. PLoS ONE 8: e69544. DOI: 10.1371/journal.pone.0069544.
Sheherazade, Ober HK, Tsang SM. 2019. Contributions of bats to the local economy through durian pollination in Sulawesi, Indonesia. Biotropica 51:913–922. DOI: 10.1111/btp.12712.
Shil SK, Ahad A, Kibria ASMG, Shaikat AH, Quasem MA. 2013. Macroanatomy of bones of large frugivorous bat (Pteropus giganteus). Indian J Vet Anat 25(1):18-20.
Swartz SM, Bennett MB, Carrier DR. 1992. Wing bone stresses in free flying bats and evolution of skeletal design for flight. Nature 359:726-729. DOI: 10.1038/359726a0.
Swartz SM, Middleton KM. 2008. Biomechanics of the bat limb skeleton: scaling, material properties and mechanics. Cells Tissue Organs 187:59-84. DOI: 10.1159/000109964.
Thewissen JGM, Babcock SK. 1992. The origin of flight in bats. BioScience 42:340-345. DOI: 10.2307/1311780.
Tobalske BW. 2016. Evolution of avian flight: muscles and constraints on performance. Philos Trans R Soc Lond B Biol Sci 371:20150383. DOI: 10.1098/rstb.2015.0383.
Walldorf V, Mehlhorn H. 2014. Bats: A Glimpse on Their Astonishing Morphology and Lifestyle. In: Klimpel dan Mehlhorn (eds). Bats (Chiroptera) as Vectors of Diseases and Parasites, Parasitology Research Monographs 5. Springer, Berlin.
Wilson DE, Mittermeier RA. 2019. Pteropodidae. In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World – Volume 9, Bats. Lynx Edicions, Barcelona.
Most read articles by the same author(s)
- ANISA RAHMA, DESRAYNI HANADHITA, ANDHIKA YUDHA PRAWIRA, SUPRATIKNO KASMONO, HERA MAHESHWARI, ARYANI SISMIN SATYANINGTIJAS, SRIHADI AGUNGPRIYONO, Morphological Study of the Heart of the Indonesian Short-Nosed Fruit Bat (Cynopterus titthaecheilus) , Biodiversitas Journal of Biological Diversity: Vol. 21 No. 11 (2020)
- MOCHAMAD ARIEF SOENDJOTO, HADI SUKADI ALIKODRA, MUHAMMAD BISMARK, HERU SETIJANTO, Diet and its composition of the proboscis monkey (Nasalis larvatus Wurmb) in rubber forest of Tabalong District, South Kalimantan , Biodiversitas Journal of Biological Diversity: Vol. 7 No. 1 (2006)
- MOCHAMAD ARIEF SOENDJOTO, HADI SUKADI ALIKODRA, MOHAMMAD BISMARK, HERU SETIJANTO, Lowland-Edge Vegetation on Habitat of Proboscis Monkey (Nasalis larvatus) in Rubber Forest of Tabalong District, South Kalimantan , Biodiversitas Journal of Biological Diversity: Vol. 6 No. 1 (2005)
- MUHAMMAD DIRGA GIFARDI, LINA NOVIYANTI SUTARDI, WARTIKA ROSA FARIDA, ANDHIKA YUDHA PRAWIRA, SRIHADI AGUNGPRIYONO, Antibacterial activity of Sunda porcupine quill extract (Hystrix javanica) against Staphylococcus aureus , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 8 (2022)
- YULIASTUTI, ANDHIKA YUDHA PRAWIRA, MUHAMMAD RISMAN WAHID, CHAIRUN NISA’, SRIHADI AGUNGPRIYONO, Morphological investigation of intestine structure of the Sunda Porcupine (Hystrix javanica) , Biodiversitas Journal of Biological Diversity: Vol. 23 No. 9 (2022)