The effect of different honey concentrations on the ultrastructure profile of spermatozoa in Dewa Mahseer (Neolissochilus soro)

##plugins.themes.bootstrap3.article.main##

ABINAWANTO
SUCI LESTARI
ANOM BOWOLAKSONO
ASTARI DWIRANTI
RETNO LESTARI
RUDHY GUSTIANO
ANANG HARI KRISTANTO

Abstract

Abstract. Abinawanto A, Lestari S, Bowolaksono A, Dwiranti A, Lestari R, Gustiano R, Kristanto AH. 2023. Title The effect of different honey concentrations on the ultrastructure profile of spermatozoa in Dewa Mahseer (Neolissochilus soro). Biodiversitas 24: 1025-1031. Dewa Mahseer (Neolissochilus soro) is one of Indonesia's endemic freshwater fish at risk of population decline due to water pollution and asynchronous maturation of gonads. One of the efforts to conserve this species is preserving their spermatozoa using honey as a protector at certain temperatures. Therefore, this study aims to evaluate the effect of multiflora honey concentrations on ultrastructure spermatozoa profile of Dewa Mahseer. The temperature was maintained at 4°C and stored for 48 hours, followed by the cement dilution (1:10) in a stock solution containing fish ringer and honey. Transmission electron microscopy (TEM) examined the spermatozoa profiles at a magnification of ×1,500. Furthermore, ANOVA one-way analysis of variance was conducted to test the effect of head length, width, and area of spermatozoa on honey. The results showed a statistically significant difference in head width (F=13.929, p=0.001). Also, there is a difference in area between honey spermatozoa, fresh spermatozoa, and without honey at a cold of 4°C. The fresh spermatozoa stored at cold temperatures without honey observed considerable membrane damage. The novel aspect is an investigation of the effect of honey as a natural protector in the storage of Neolissochilus spermatozoa at 4°C for 48 hours. This study can be applied as a guide for the 48 hours of spermatozoa in a cold temperature in fish farming.

##plugins.themes.bootstrap3.article.details##

References
Bozkurt Y, Secer S. 2005. Effect of short-term preservation of mirror carp (Cyprinus carpio) semen on motility, fertilization, and hatching rates. The Isr. J. Aquac. 57(3): 207—212. ISSN 0792 - 156X
Contreras P, Dumorne K, Ulloa-Rodriguez P, Merino O, Figueroa W, Farias JG, Valdebenito I, Risopatron J. 2019. Effect of short-term storage on sperm function in fish semen: a review. Aquac. 1—17. https://doi.org/10.1111/raq.12387
Díaz R, Lee-Esteves M, James Q, Dumorne K. 2019. Changes in Atlantic salmon (Salmo salar) sperm morphology and membrane lipid composition related to cold storage and cryopreservation. Anim. Repro. Sci. 204: 50—59. https://doi.org/10.1016/j.anireprosci.2019.03.004
Figueroa E, Valdebenito I, Farias JG. 2014. Review article: Technologies used in the study of sperm function in cryopreserved fish spermatozoa. Aquac. Res. 1—15. https://doi.org/10.1111/are.12630
Figueroa E, Valdebenito I, Merino O, Ubilla O, Risopatron J, Farias JG. 2016. Cryopreservation of Atlantic salmon Salmo salar sperm: effects on sperm physiology. J. Fish Biol. 89(3): 1537—1550. https://doi.org/10.1111/jfb.13052
Gu NH, Zhao WL, Wang GS, Sun F. 2019. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Repro. Biol. and Endocrinol. 17(1): 1—12. https://doi.org/10.1186/s12958-019-0510-y
Lenzi A, Picardo M, Gandini L, Dondero F. 1996. Lipids of the sperm plasma membrane: From polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum. Repro. Updat. 2:246–256. https://doi.org/10.1093/humupd/2.3.246
Lestari S, Abinawanto A, Bowolaksono A, Lestari R, Dwiranti A, Gustiano R, Kristanto AH. 2021. The Use of Honey as Anti-Oxidative Agent: Hatching Rate Embryo of Tor Soro after 48h Post-Cold Storage. J. Hun. Univ. Nat. Sci. 48(12). ISSN 1674-2974
Luo Z, Wang Z, Li Q, Pan Q, Yang C, Liu F. 2011. Spatial distribution, electron microscopy analysis of titanium and its correlation to heavy metals: occurrence and sources of titanium nanomaterials in surface sediments from Xiamen Bay, China. J. Environ. Monit. 13(4): 1046—1052. https://doi.org/10.1039/C0EM00199F
Massar B, Dey S, Dutta K. 2011. An Electron Microscopic Analysis on the Ultra Structural Abnormalities in Sperm of the Common Carp Cyprinus carpio L. Inhabiting a Polluted Lake, Umiam (Meghalaya, India). Microsc. Res. and Tech. 74: 998—1005. https://doi.org/10.1002/jemt.20986
Mondal M. 2020. Generally eukaryotic algal flagella hold (9+2) organization. Are there exceptions?. In https://www.quora.com/Generally-eukaryotic-algal-flagella-hold-9-2-organization-Are-there-exceptions
Narida A, Tsai S, Huang CY, Wen ZH, Lin C. 2022. The effects of cryopreservation on the cell ultrastructure in aquatik organisms. Biopres. and Biobanking 00(00): 1—8. DOI: 10.1089/bio.2021.0132
Psenicka M, Hadi Alavi SM, Rodina M, Gela D, Nebesarova J, Linhart O. 2007. Morphology and ultrastructure of Siberian sturgeon (Acipenser baerii) spermatozoa using scanning and transmission electron microscopy. Biol. Cell 99:103–115. https://doi.org/10.1042/BC20060060
Rothmann SA, Bort AM. 2018. Encyclopedia of Reproduction 2nd Edition Volume 5: Sperm morphology. Elsevier Inc. ISBN: 9780128151457
Sandoval-Vargas L, Risopatrón J, Dumorne K, Farías J, Figueroa E, Valdebenito I. 2022. Spermatology and sperm ultrastructure in farmed coho salmon (Oncorhynchus kisutch). Aquac 547: 737471. https://doi.org/10.1016/j.aquaculture.2021.737471
Schneider G, Peter G, Stefan H, Stefan R, Florian M, Kunio N, James BH, Waltraud GM, James GM. 2010. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7:985–987. https://doi.org/10.1038/nmeth.1533
Shaliutina A., Hulak M, Gazo L, Linhartova P, Linhart O. 2013. Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim. Repro. Sci. 139(1—4): 127—135. https://doi.org/10.1016/j.anireprosci.2013.03.006