Xylanase production by Trichoderma virens MLT2J2 under solid-state fermentation using corn cob as a substrate




Abstract. Istiqomah L, Cahyanto MN, Zuprizal. 2022. Xylanase production by Trichoderma virens MLT2J2 under solid-state fermentation using corn cob as a substrate. Biodiversitas 23: 6530-6538. Xylanase is one of non-starch polysaccharide (NSP) degrading enzyme encompass in industrial application like animal feed, food, biofuel, and textile. The objective of this study was to produce and characterize the crude xylanase from MLT2J2 isolate that isolated from coconut husk. Molecular identification revealed that MLT2J2 isolate was identified as Trichoderma virens. The xylanase was produced from Trichoderma virens MLT2J2 (108 spores/g of corncob) using corn cob as substrate with 80% initial moisture content using under solid-state fermentation (SSF) at 30°C for 7 d of incubation. Changes in surface morphology and structure of fermented corn cob were monitored by Scanning Electron Microscope (SEM). Statistical analysis was performed using One-way of analysis of variance (ANOVA) followed Tukey Kramer post hoc test to compare treatment means. Under fermentation parameters the maximum xylanase activity was 181.22 U/g-IDW, loss of dry matter 11.43%, and pH was decreased (4.11) at 5 d of incubation compared to initial pH (5.47). Xylanase was produced between a broad range pH 3-8 and showed acidophilic and mesophilic characteristics (optimum at pH 5,0 and 40°C), and also conserved more than 50% of activity before 4 h of incubation at 30°C and after 5 h at 40°C. The micrographs surface of corn cob before SSF appeared intact and smoother, while turned coarser after SSF, suggestive of a disrupted and more porous surface. These findings reveled that T. virens MLT2J2 could produce extracellular xylanase and potential to disrupt the cell wall of corn cob as a cheap substrate for enzyme production thereby increased the reactive surface area of corn cob for enzymatic in situ hydrolysis.


Abd. El-Hack ME, Alagawany M, Arif M, Emam M, Saeed M, Arain MA, Siyal FA, Patra A, Elnesr SA, Khan RU. 2018. The uses of microbial phytase as a feed additive in poultry nutrition – a review. Ann. Anim. Sci., 18, 639-658. DOI: 10.2478/aoas-2018-0009
Abo-Elmagd HI. 2014. Optimization and biochemical characterization of exracellular xylanase from Trichoderma harzianum MH-20 under solid state fermentation. Life Sci. J., 11, 188-195. http://www.lifesciencesite.com
Ahmed S, Imdad SS, Jamil A. 2012. Comparative study for the kinetics of extracellular xylanases from Trichoderma harzianum and Chaetomium thermophilum. Electron. J. Biotechnol., 15, 1-8. DOI: 10.2225/vol15-issue3-fulltext-2
Ajijolakewu KA, Leh CP, Wan Abdullah WN, Lee CK. 2016. Assessment of the effect of easily-metabolised carbon supplements on xylanase production by newly isolated Trichoderma asperellum USM SD4 cultivated on oil palm empty fruit bunches. BioResources, 11, 9611-9627. DOI: 10.15376/biores.11.4.9611-9627
AL-Hmadi H, El Mokni R, Joshi RK, Ashour ML, Hammami S. 2021. The impact of geographical location on the chemical compositions of Pimpinella lutea desf. growing in Tunisia. Appl. Sci., 11, 7739. DOI: 10.3390/app11167739
Alvira P, Gyalai-Korpos M, Barta Z, Oliva JM, R´eczey K, Ballesteros M. 2013. Production and hydrolytic efficiency of enzymes from Trichoderma reesei RUTC30 using steam pretreated wheat straw as carbon source. J. Chem. Technol. Biotechnol., 88, 1150-1156. DOI: 10.1002/jctb.3955
Amira D, Zahrah SF, Anuar M, Adha N. 2011. Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. African. J. Biotechnol., 10, 18775-18780. DOI:10.5897/AJB11.2751
AOAC (Association of Official Agricultural Chemists). 2005. Official Methods of Analysis. Arlington: Assoc. Off. Anal. Chem.
Basit A, Jiang W, Rahim K. 2019. Xylanase and its industrial applications In Biotechnological Applications of Biomass. Editor: PB Thalita, TO Basso, LC Basso. London: IntechOpen. DOI: 10.5772/intechopen.89320
Cohort. 2008. CoSTAT Version 6.400. Cohort Software 798. Lighthouse Ave, Monterey, USA. http://www.cohort.com
Dahlquist E. 2013. Technologies for Converting Biomass to Useful Energy Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation. London: CRC Press, Taylor & Francis Group.
Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues: opportunities & perspectives. Int. J. Biol. Sci., 5, 578-595. DOI: 10.7150/ijbs.5.578
Del?ne S, Marrelli M, Conforti, F, Formisano C, Rigano D, Menichini F, Senatore F. 2017. Variation of Malva sylvestris essential oil yield, chemical composition and biological activity in response to different environments across Southern Italy. Ind. Crop. Prod., 98, 29-37. DOI: 10.1016/j.indcrop.2017.01.016
Dorta-vásquez R, Valbuena O, Pavone-maniscalco D. 2019. Solid-state fermentation of paper sludge to obtain spores of the fungus Trichoderma asperellum. The EuroBiotech. J., 3, 71-77. DOI: 10.2478/ebtj-2019-0008
El-shishtawy RM, Mohamed SA, Asiri AM, Gomaa A-bM, Ibrahim IH, Al-Talhi HA. 2015. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. BMC Biotechnol., 1-13. DOI 10.1186/s12896-015-0158-4
Ezeilo UR, Tin C, Huyop F, Izzati I, Abdul R. 2019. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. J. Environ. Manage., 243, 206-217.
Gams W and Bissett J. 2002. Morphology and identification of Trichoderma. In Trichoderma and Gliocladium: Basic biology, taxonomy and genetics. Editor: CP Kubicek CP and GE Harman. England: Taylor & Francis Ltd. https://www.taylorfrancis.com/chapters/mono/10.1201/9781482295320-8/
Gowdhaman D and Ponnusami V. 2015. Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int. J. Biol. Macromol., 79, 595-600. DOI: 10.1016/j.jenvman.2019.04.113
Hirasawa H, Shioya K, Furukawa T, Sumitani J-I, Kawaguchi T, Morikawa Y, Shida Y, Ogaswara W. 2018. Engineering of the Trichoderma reesei xylanase3 promoter for efficient enzyme expression. Appl. Microbiol. Biotechnol., 102, 2737-2752. DOI: 10.1007/s00253-018-8763-5
Hiraishi A, Kamagata Y, Nakamura K. 1995. Polymerase Chain reaction amplification and restriction fragment length polymorphism analysis of 16s rRNA genes from methanogens. J. Ferment. Bioeng., 79, 523-529. DOI: 10.1016/0922-338X(95)94742-A
Ishida T, Parks JM, Smith JC. 2020. Insight into the catalytic mechanism of GH11 xylanase: computational analysis of substrate distortion based on a neutron structure. J. Am. Chem. Soc. 142, 17966-17980. DOI: 10.1021/jacs.0c02148
Ja’afaru, MI. 2013. Screening of fungi isolated from environmental samples for xylanase and cellulase production. Hindawi Publ. Corp., 1-7. DOI: 10.1155/2013/283423
Jekayinfa SO, Orisaleye JI, Pecenka R. 2020. An assessment of potential resources for biomass energy in Nigeria. Resources, 9, 1-41. DOI: 10.3394/resources9080093
Khanahmadi M, Arezi I, Amiri M, Miranzadeh M. 2018. Bioprocessing of agro-industrial residues for optimization of xylanase production by solid- state fermentation in flask and tray bioreactor. Biocatal. Agric. Biotechnol., 13, 272-283. DOI: 10.1016/j.bcab.2018.01.005
Korkmaz MN, Ozdemir SC, Uzel A. 2017. Xylanase production from marine derived Trichoderma pleuroticola 08ÇK001 strain isolated from Mediterranean coastal sediments. J. Basic Microbiol., 1–13. DOI: 10.1002/jobm.201700135
Krisnawati R, Sardjono, Widada J, Suroto DA, Cahyanto MN. 2022. Effect of glucose on endo-xylanase and ?-xylosidase production by fungi isolated in Indonesia. J. Pure Appl. Microbiol. DOI: 10.22207/JPAM.16.1.12
Kumar S, Sharma HK, Sarkar BC. 2011. Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci. Biotechnol. 20, 1289-1298. DOI: 10.1007/s10068-011-0178-3
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets brief communication. Mol. Biol. Evol., 33, 1870-1874. DOI:10.1093/molbev/msw054
Liu C, Chen Q, Cheng Q, Jing-ling W, He G. 2007. Effect of cultivating conditions on ?-galactosidase production by a novel Aspergillus foetidus ZU-G1 strain in solid-state fermentation. J. Zhejiang Univ. Sci., B8, 371-376. DOI: 10.1631/jzus.2007.B0371
Liu Y, Chen P, Zhou M, Wang T, Fang S, Shang X, Fu X. 2018. Geographic variation in the chemical composition and antioxidant properties of phenolic compounds from Cyclocarya paliurus (Batal) iljinskaja leaves. Molecules, 23(10): 2440. DOI: 10.3390/molecules23102440
Lopez-Ramirez N, Volke-Sepulveda T, Gaime-Perraud I, Saucedo-Castañeda G, Favela-Torres E. 2018. Effect of stirring on growth and cellulolytic enzymes production by Trichoderma harzianum in a novel bench-scale solid-state fermentation bioreactor. Bioresour. Technol., 265, 291-298. DOI: 10.1016/j.biortech.2018.06.015
Louis ACF and Venkatachalam S. 2020. Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. Int. J. Biol. Macromol. 163, 260-269. DOI: 10.1016/j.ijbiomac.2020.06.276
Mahamud M and Gomes D. 2017. Enzymatic saccharification of sugar cane bagasse by the crude enzyme from indigenous fungi. J. Sci. Res., 4, 227-238.
Mandels M and Weber J. 1969. The production of cellulases. Adv. Chem. Ser., 95, 391-414. DOI: 10.3329/jsr.v4i1.7745
Michelin M, Mota AMO, Silva DP, Ruzene DS, Vicente AA, Teixeira JA. 2019. Production of biomass-degrading enzymes by Trichoderma reesei using liquid hot water-pretreated corncob in different conditions of oxygen transfer. BioEnergy Res., 12, 583-592. DOI: 10.1007/s12155-019-09991-8
Mienda BS, Idi A, Umar A. 2011. Microbiological features of solid state fermentation and its applications - An overview. Res. Biotechnol., 2, 21-26. DOI: 10.1016/B978-0-12-372180-8.50042-1
Miller G. 1959. Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426-428. DOI: 10.1021/ac60147a030/
Mohamed SA, Al-malki AL, Khan JA, Kabli SA, Al-garni SM. 2013. Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rind. J. Microbiol., 51, 605-611. DOI: 10.1007/s12275-013-3016-x
Ngikoh B, Karim NAA, Jahim J, Bakar FDA, Murad AMA. 2017. Characterisation of cellulases and xylanase from Trichoderma virens UKM1 and its potential in oil palm empty fruit bunch (OPEFB) saccharification. J. Phys. Sci., 28, 171-184. DOI: 10.21315/jps2017.28.s1.11
Pathak P, Bhardwaj NK, Singh AK. 2014. Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Appl. Biochem. Biotechnol., 172 3776-3797. DOI: 10.1007/s12010-014-0758-9
Peciulyte A, Anasontzis GE, Karlström K, Larsson PT, Olsson L. 2014. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet. Biol., 71, 64-72. DOI: 10.1016/j.fgb.2014.07.011
Poeta P, Dias AA, Igrejas G, Silva V, Bezerra R, Nunes CS. 2018. Selection, engineering, and expression of microbial enzymes In Enzymes in Human and Animal Nutrition: Principles and Perspectives. Editor: C Nunes, V Kumar, S Steudler, A Werner, J Cheng. United Kingdom: Elsevier Academic Press. DOI: 10.1016/B978-0-12-805419-2.00001-0
Prasad S, Singh A, Joshi HC. 2007. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl., 50, 1-39. DOI: 10.1016/j.resconrec.2006.05.007
Saha BC. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol., 30, 279-291. DOI: 10.1007/s10295-003-0049-x
Samuels GJ, Dodd SL, Gams W, Castleburry LA, Petrini O. 2002. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146-170. DOI: 10.1080/15572536.2003.11833257
Sharma KK and Singh US. 2014. Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. J. Appl. & Nat. Sci. 6 (2): 451-456. DOI: 10.31018/jans.v6i2.481
Sharma K., Thakur A, Goyal A. 2019. Xylanases for food applications. in Green Bio-process: Enzymes in Industrial Food Processing. Editor: B Varjani and S Raveendran. Singapore: Springer. DOI: 10.1007/978-981-13-3263-0_7
Soliman HM, Sherief A-DA, EL-Tanash AB. 2012. Production of xylanase by Aspergillus niger and Trichoderma viride using some agriculture residues. Int. J. Agric. Res. 7, 46-57. DOI: 10.3923/ijar.2012.46.57
Steudler S, Werner A, Walther T. 2019. It is the mix that matters: substrate-specific enzyme production from filamentous fungi and bacteria through solid-state fermentation In Solid State Fermentation Advances in Biochemical Engineering/Biotechnology. Editor: S Steudler, A Werner, J Cheng. Switzerland: Springer. DOI: 10.1007/10_2019_85
Tarayre C, Bauwens J, Brasseur C, Mattéotti C, Millet C, Guiot P A, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P. 2015. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. Environ. Sci. Pollut. Res., 22, 4369-4382. DOI: 10.1007/s11356-014-3681-2
Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583-3597. DOI: 10.3168/jds.S0022-0302(91)78551-2
Vandenberghe LPS, Soccol CR, Pandey A, Lebeault J-M. 1999. Microbial production of citric acid. Braz. Arch. Biol. Technol., 42. DOI: 10.1590/S1516-89131999000300001
Verma D and Satyanarayana T. 2012. Molecular approaches for ameliorating microbial xylanases. Bioresour. Technol., 117, 360-367. DOI: 10.1016/j.biortech.2012.04.034
White T, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal RNA genes for phylogenetics In PCR Protocols: a Guide to Methods and Applications. Editor: M Innis, D Gelgards, J Sninsky, T White. San Diego: Academic Press. DOI:10.1016/B978-0-12-372180-8.50042-1
Xue Y, Cui X, Zhang Z, Zhou T, Gao R, Li Y, Ding X. 2020. E?ect of ?-endoxylanase and ?-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food Chem., 302, 125332. DOI: 10.1016/j.foodchem.2019.125332