The morphoanatomy, histochemistry, and phytochemistry of the leaves and fruits of Rhodomyrtus tomentosa

##plugins.themes.bootstrap3.article.main##

EVI MINTOWATI KUNTORINI
SASI GENDRO SARI
RINI FARIANI

Abstract

Abstract. Kuntorini EM, Sari SG, Fariani R. 2023. The morphoanatomy, histochemistry, and phytochemistry of the leaves and fruits of Rhodomyrtus tomentosa. Biodiversitas 24: 98-105. Rhodomyrtus tomentosa (Ait.) Hassk is native to Southeast Asia. The entire plant has been used in traditional Vietnamese, Chinese, and Malaysian medicine for a long time. Bioactive substances are abundant in ripe fruits. However, few studies have examined phytochemical changes and distribution throughout leaf and fruit growth. This study evaluated the morphoanatomy, histochemical, and phytochemical properties of R. tomentosa leaves and fruits. The cross-sectional anatomical structures observed in the leaves included the epidermis, mesophyll, and carrier bundle, while the fruit structures observed included a pericarp layer with an exocarp/outer layer, mesocarp, and endocarp. Flavonoids, tannins, terpenoids, and alkaloids were found in the leaf's adaxial and abaxial epidermis, mesophyll, xylem, phloem, midrib parenchyma, secretory cavities, and trichomes. They were also distributed throughout the fruit's exocarp, mesocarp, endocarp, secretory cavities, xylem, phloem, trichomes, and seeds. Young leaves contained the highest total flavonoid concentration (196 ± 1.77 mg QE/g), green fruit had the highest total phenol concentration (97.70 ± 18.15 mg GAE/g), old leaves contained the highest total alkaloid concentration (13.22 ± 0.98%), and red fruit had the highest total tannin concentration (1.66 ± 0.15 mg GAE/g).

##plugins.themes.bootstrap3.article.details##

References
Agustina, N., Purwestri, Y. A., & Nugroho, L. H. 2016. Antioxidant activity and histochemical analysis of Acalypha indica L . and Acalypha wilkesiana Muell . Arg . vegetative and generative organs. International Journal of Pharmacognosy and Phytochemical Research. 8(10) :1657–1662.
Alasa, AN, Anam, S, Jamaluddin. 2017. Analyze Total Level of Secondary Metabolites from Ethanol Extracts of "Tamoenju" Leaves (Hibiscus Surattensis L.). KOVALEN. 3(3) : 258-268.
Al-Edany, T.Y., & Al-Saadi, S.A.A.M. 2012. Taxonomic significance of anatomical characters in some species of the family Myrtaceae. American Journal of Plant Sciences. 03 : 572–581.
Belwal, T., Pandey, A., Bhatt, I. D., Rawal, R. S., & Luo, Z. 2019. Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Scientific Reports. 9(1) : 1–11. https://doi.org/10.1038/s41598-019-42270-2
Carqueijeiro, I., Noronha, H., Duarte, P., Gerós, H., & Sottomayor, M. 2013. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a Proton-Driven Antiport. Plant Physiology. 162(3) : 1486–1496. https://doi.org/10.5772/intechopen.78510
Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. 2011. Phenolic compounds in brassica vegetables. Molecules. 16(1) : 251–280. https://doi.org/10.3390/molecules16010251
Celli, G. B., Pereira-Netto, B., & Beta, T. 2011. Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Research Internationa. 44 : 2442–2451. https://doi.org/10.1016/j.foodres.2010.12.036
Cerulli, A., Masullo, M., Montoro, P., Hošek, J., Pizza, C., & Piacente, S. 2018. Metabolite profiling of "green" extracts of Corylus avellana Leaves by 1H NMR spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis. 160 : 168–178. https://doi.org/10.1016/j.jpba.2018.07.046
Dai GH, Nicole M, Andary C. 1996. Flavonoids accumulate in cell walls, middle lamellae and callose–rich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiol Mol Plant Pathol 49: 285–306. https://doi.org/10.1006/pmpp.1996.0055
Dhale DA (2011) Histochemical investigation of some medical plants. Adv Res Pharm Biol. 1: 147–154.
Elmasta?, M, Ay?e D, Nusret G, Ümit D, dan Mehmet G. 2017. Changes in flavonoid and phenolic acid contents in some rosa species during ripening. Food Chemistry. 235: 154–59. https://doi.org/10.1016/j.foodchem.2017.05.004.
Fahn A 1990. Plant anatomy. Oxford: Pergamon press. Farmacopeia.
Ferreira, P., Mendes, C., Reis, S., Rodrigues, C., & Oliveira, D. 2011. Morphoanatomy, histochemistry and phytochemistry of Psidium guineense Sw. (Myrtaceae) Leaves. Journal of Pharmacy Research. 4(4) : 942–944.
Furr, M., & Mahlberg, P. G. 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. Journal of Natural Products. 44(2) : 153–158.
Hamid AH, Mutazah SSR, Yusoff MM. 2017. Rhodomyrtus tomentosa: a phytochemical and pharmacological review. Asian J Pharm Clin Res.10: 10–16. https://doi.org/10.22159/ajpcr.2017.v10i1.12773
Hamid, H. A., Mutazah, R., Yusoff, M. M., Karim, N. A. A., & Razis, A. F. A. 2017. Comparative analysis of antioxidant and antiproliferative activities of Rhodomyrtus tomentosa extracts prepared with various solvents. Food and Chemical Toxicology. 108 : 451–457. https://doi.org/10.1016/j.fct.2016.10.004
Harbone, J.B. 1987. Metode Fitokimia. ITB, Bandung.
Hermanto, C., Luh, N., Indriani, P., & Hadiati, S. 2013. Keragaman dan Kekayaan Buah Tropika Nusantara. IAARD Press.
Hou, J, Lu L, Mingyue S, Tianming Y, Xuejin M, dan Yuanxing W. 2021. Variations in phenolic acids and antioxidant activity of navel orange at different growth stages. Food Chemistry. 360 : 1-7. https://doi.org/10.1016/j.foodchem.2021.129980.
Kantachot, C., Chantaranothai, P., & Thammathaworn, A. 2007. Contributions to the leaf anatomy and taxonomy of thai Myrtaceae. The Natural History Journal of Chulalongkorn University. 7(1) : 35–45.
Kusuma IW, Ainiyati N, Suwinarti W (2016) Search for biological activities from an invasive shrub species rosemyrtle (Rhodomyrtus tomentosa). Nusant Biosci 8: 55–59. https://doi.org/10.13057/nusbiosci/n080110
Lai, T. N. H., Herent, M.-F., Quetin-Leclercq, J., Nguyen, T. B. T., Rogez, H., Larondelle, Y., & André, C. M. 2013. Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chemistry, 138(2–3), 1421–1430. https://doi.org/10.1016/j.foodchem.2012.10.125
Lin, Y., Huang, G., Zhang, Q., Wang, Y., Dia, V. P., & Meng, X. 2020. Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biology and Technology, 162,1-8. https://doi.org/10.1016/j.postharvbio.2019.111097
Liu, H., Feng, M. Y., Yu, Q., Yan, H., Zeng, Y., Qin, X. J., & Liu, H. Y. 2018. Formyl phloroglucinol meroterpenoids from Eucalyptus tereticornis and their bioactivities. Tetrahedron, 74(13) : 1540–1545. https://doi.org/10.1016/j.tet.2018.02.020
Martin, D., Tholl, D., Gershenzon, J., & Rg Bohlmann, J. 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of norway spruce stems 1. Plant Physiology, 129 : 1003–1017.
Nugroho LH, Sumardi I dan Purnomo. 2006. Struktur dan perkembangan tumbuhan. UGM Press. Yogyakarta.
Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., & Vianello, A. 2013. Plant flavonoids-biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences, 14(7) : 14950–14973. https://doi.org/10.3390/ijms140714950
Retamales, H., Serra, M. T., & Scharaschkin, T. 2014. Anatomical studi of the flower, fruit and seeds of Myreugenia rufa (Myrtaceae). Boletin Del Nacional de Historia Natural, 63 : 89–100.
Roy et al. 2018. A Review on the Alkaloids an Important Therapeutic Compound from Plants. International Journal of Plant Biotechnology. 3 (2) : 1-10.
Ruzin, S.E. 1999. Plant Microtechnique and Microscopy. Oxford University Press, Oxford.
Vio–Michaelis S, Feucht W, and Gómez M, (2020) Histochemical analysis of anthocyanins, carotenoids, and flavan–3–ols/proanthocyanidins in Prunus domestica L. fruits during ripening. J Agr Food Chem 68: 2880–2890. https://doi.org/10.1021/acs.jafc.9b01954.
Zhao GH, Zhang RF, Liu L, et al. (2017) Different thermal drying methods affect the phenolic profiles, their bioaccessibility and antioxidant activity in Rhodomyrtus tomentosa (Ait.) Hassk berries. LWT–Food Sci Technol 79: 260–266. https://doi.org/http://dx.doi.org/10.1016/j.lwt.2017.01.039
Zhao ZF, Wu L, Xie J, et al. (2019) Rhodomyrtus tomentosa (Aiton.): A review of phytochemistry, pharmacology and industrial applications research progress. Food Chem 309: 1–10. https://doi.org/10.1016/j.foodchem.2019.125715
Zhu, C., Zhou, X., Long, C., Du, Y., Li, J., Yue, J., & Pan, S. 2020. Variations of Flavonoid composition and antioxidant properties among different cultivars, fruit tissues and developmental stages of citrus fruits. Chemistry & Biodiversity, 17(6) : 1-23. https://doi.org/10.1002/cbdv.201900690.
Zou, Z. X., Tan, G. S., Huang, Q., Sun, H. H., Huo, L. Q., Zhong, W. Q., & Tan, H. B. 2018. Brachyanins A-C, pinene-derived meroterpenoids and phloroglucinol derivative from Leptospermum brachyandrum. Fitoterapia, 130 : 184–189. https://doi.org/10.1016/j.fitote.2018.08.026