The role of coffee agroforestry on available water capacity and root length density in smallholder plantation

##plugins.themes.bootstrap3.article.main##

AFIFATUL KHOIRUNNISAK
SUGENG PRIJONO
KURNIAWAN SIGIT WICAKSONO

Abstract

Abstract. Khoirunnisak A, Prijono S, Wicaksono KS. 2023. The role of coffee agroforestry on available water capacity and root length density in smallholder plantation. Biodiversitas 24: 55-61. The application of coffee agroforestry has several advantages, such as increasing the cycle of nutrients and soil organic matter as well as improving soil physical properties. However, there is still an information gap related to the interaction between coffee plants and shade plant roots. This study aimed to evaluate coffee agroforestry on available water capacity (AWC) and root length density (RLD). The research was carried out at the smallholder coffee plantation in Dampit District in four shade types (coffee-open, shaded with Musa sp., shaded with Gliricidia sp., and shaded with L. leucochepala). Soil and root samples were taken at three depths (0-20 cm, 20-40 cm, and 40-60 cm) and at two distances (near the coffee stems and between the coffee shade). The variables observed were AWC, RLD, soil organic C, soil aggregate stability, and soil penetration resistance. The result was coffee plants with shade trees increased AWC value and root density compared to coffee-open. The type of shade significantly affected RLD, where shaded with Gliricidia sp., and shaded with L. leucochepala were better than coffee-open. This indicates that there was no root competition between coffee plants and shade trees. However, shaded with Musa sp. had lower RLD than coffee-open. Soil depth had a significant effect on the AWC value and root length density of coffee plants, where the most AWC values ??and coffee root distribution were higher at a depth of 0-20 cm.

##plugins.themes.bootstrap3.article.details##

References
Adimihardja, A., L.I Amin, F. Agus, and Djaenudin. 2000. Indonesia's Land Resources and Management. Center for Soil and Agroclimate Research. Bogor. [Indonesian].
Adiyah, F., Micheli, E., Csorba, A., Gebremeskel, T., Gyuricza, C., Melenya, C., Dawoe, E., Owusu, S., & Fuchs, M. 2022. Effects of landuse change and topography on the quantity and distribution of soil organic carbon stocks on Acrisol catenas in tropical small-scale shade cocoa systems of the Ashanti region of Ghana. Catena 216. DOI: https://doi.org/https://doi.org/10.1016/j.catena.2022.106366
Atmadji, E., Priyadi, U., & Achiria, S. 2019. Vietnam and Indonesia Coffee Trade in Four Main Coffee Export Destination Countries: Application of the Constant Market Share Model. Jurnal Ilmu Ekonomi Dan Pembangunan 19(1): 37–46.
Bayala, J., Sanou, J., Teklehaimanot, Z., Ouedraogo, S. J., Kalinganire, A., Coe, R., & van Noordwijk, M. 2015. Advances in knowledge of processes in soil-tree-crop interactions in parkland systems in the West African Sahel: A review. Agriculture, Ecosystems and Environment 205: 25–35. DOI: https://doi.org/10.1016/j.agee.2015.02.018
BPS. 2019. Indonesian coffee statistics (Sub Direktorat Statistik Tanaman Perkebunan (ed.). BPS-Statistics Indonesia [Indonesian]
Cannavo, P., Sansoulet, J., Harmand, J. M., Siles, P., Dreyer, E., & Vaast, P. 2011. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agriculture, Ecosystems and Environment 140(1–2): 1–13. DOI: https://doi.org/10.1016/j.agee.2010.11.005
Carducci, C. E., Oliveira, G. C., Curi, N., Heck, R. J., Rossoni, D. F., de Carvalho, T. S., & Costa, A. L. 2015. Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil and Tillage Research 145: 171–180. DOI: https://doi.org/10.1016/j.still.2014.09.015
Chenu, C., Le Bissonnais, Y., & Arrouays, D. 2000. Organic Matter Influence on Clay Wettability and Soil Aggregate Stability. Soil Science Society of America Journal 64(4): 1479–1486. DOI: https://doi.org/10.2136/sssaj2000.6441479x
Colombi, T., Torres, L. C., Walter, A., & Keller, T. 2018. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth – A vicious circle. Science of the Total Environment 626: 1026–1035. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.129
Evizal, R., Prijambada, I., Widada, J., & Widianto, D. 2009. Biomass production of shade grown coffee agroecosystems. International Seminar on Sustainable Biomass Production and Utilization Challenges and Oppurtunitiies (ISOMASS) November 2016. https://www.researchgate.net/publication/287231602_Biomass_production_of_shade_grown_coffee_agroecosystems
Fikriani, C., & Slamet, J. S. 2019. Peluang dan Tantangan Pengembangan Kopi Amstirdam. Warta: Pusat Penelitian Kopi Dan Kakao Indonesia, 31(3).
Gabriel, J. L., García-González, I., Quemada, M., Martin-Lammerding, D., Alonso-Ayuso, M., & Hontoria, C. 2021. Cover crops reduce soil resistance to penetration by preserving soil surface water content. Geoderma 386. DOI: https://doi.org/10.1016/j.geoderma.2020.114911
Ghassemi-Golezani, K., & Farhangi-Abriz, S. 2021. Plant available water holding capacity of soil under chemically modified biochars. Rhizosphere, 21. DOI: https://doi.org/10.1016/j.rhisph.2021.100469
Guhra, T., Stolze, K., & Totsche, K. U. 2022. Pathways of biogenically excreted organic matter into soil aggregates. Soil Biology and Biochemistry, 164 DOI: https://doi.org/10.1016/j.soilbio.2021.108483
Hanuf, A. A., Prijono, S., & Soemarno. 2021. Improvement of soil available water capacity using biopore infiltration hole with compost in a coffee plantation. Journal of Degraded and Mining Lands Management 8(3): 2791–2799. DOI: https://doi.org/10.15243/jdmlm.
Hegde, D. M., & Srinivas, K. 1989. Effect of soil matric potential and nitrogen on growth, yield, nutrient uptake and water use of banana. Agricultural Water Management, 16(1–2): 109–117. DOI: https://doi.org/10.1016/0378-3774(89)90045-0
International Coffee Organization. 2019. World Coffee consumption for 2019/2020. http://www.ico.org/prices/new-consumption-table.pdf
Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., & Basirat, S. 2012. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems and Environment 148: 22–28. DOI: https://doi.org/10.1016/j.agee.2011.10.021
Kunlanit, B., Butnan, S., & Vityakon, P. 2019. Land-use changes influencing C sequestration and quality in topsoil and subsoil. Agronomy 9(9): 1–16. DOI: https://doi.org/10.3390/agronomy9090520
Linn, D. M., & Doran, J. W. 1984. Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Science Society of America Journal 48(6): 1267–1272. DOI: https://doi.org/10.2136/sssaj1984.03615995004800060013x
Lipiec, J., Horn, R., Pietrusiewicz, J., & Siczek, A. 2012. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research 121: 74–81. DOI: https://doi.org/10.1016/j.still.2012.01.013
Montoani Silva, B., César de Oliveira, G., Evaldo Serafim, M., Eloize Carducci, C., Andressa da Silva, É., Martins Barbosa, S., Beatriz Batista de Melo, L., Junior Reis dos Santos, W., Henrique Pereira Reis, T., Henrique Caputo de Oliveira, C., & Tácito Gontijo Guimarães, P. 2020. Soil Management and Water-Use Efficiency in Brazilian Coffee Crops. Coffee - Production and Research 1–20. DOI: https://doi.org/10.5772/intechopen.89558
Neneng, N. L., & Jubaedah. 2014. Teknologi Peningkatan Cadangan Karbon Lahan Kering Dan Potensinya Pada Skala Nasional. Konservasi Tanah Menghadapi Perubahan Iklim
Normaniza, O., Faisal, H. A., & Barakbah, S. S. 2008. Engineering properties of Leucaena leucocephala for prevention of slope failure. Ecological Engineering 32(3): 215–221. DOI: https://doi.org/10.1016/j.ecoleng.2007.11.004
Okoye, P. U., Torres-arellano, S., Mejía-lopez, M., Alem, J. L., & Sebastian, P. J. 2022. Industrial Crops & Products A review on bioenergetic applications of Leucaena leucocephala. 182. DOI: https://doi.org/10.1016/j.indcrop.2022.114847
Olorunfemi, I., Fasinmirin, J., & Ojo, A. 2016. Modeling cation exchange capacity and soil water holding capacity from basic soil properties. Eurasian Journal of Soil Science (Ejss), 5(4): 266. DOI: https://doi.org/10.18393/ejss.2016.4.266-274
Padovan, M. P., Cortez, V. J., Navarrete, L. F., Navarrete, E. D., Deffner, A. C., Centeno, L. G., Munguía, R., Barrios, M., Vílchez-Mendoza, J. S., Vega-Jarquín, C., Costa, A. N., Brook, R. M., & Rapidel, B. 2015. Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agroforestry Systems 89(5): 857–868. https://doi.org/10.1007/s10457-015-9820-z
Panigrahi, N., Thompson, A. J., Zubelzu, S., & Knox, J. W. 2021. Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae 276. https://doi.org/10.1016/j.scienta.2020.109735
Ramesh, T., Bolan, N. S., Beth, M., Ok, Y. S., Choudhury, B. U., Wang, H., Tang, C., Wang, X., Song, Z., & Freeman, O. W. 2019. Soil organic carbon dynamics?: Impact of land use changes and management practices?: A review. In Advance in Agronomy 156. DOI: https://doi.org/10.1016/bs.agron.2019.02.001
Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., & Bloodworth, H. 2003. Effect of soil organic carbon on soil water retention. Geoderma 116(1–2): 61–76. DOI: https://doi.org/10.1016/S0016-7061(03)00094-6
Rhoton, F. E., Shipitalo, M. J., & Lindbo, D. L. 2002. Runoff and soil loss from midwestern and southeastern US silt loam soils as affected by tillage practice and soil organic matter content. Soil and Tillage Research 66(1): 1–11. DOI: https://doi.org/10.1016/S0167-1987(02)00005-3
Riahi, A., Hdider, C., Sanaa, M., Tarchoun, N., Kheder, M. Ben, & Guezal, I. 2009. The influence of different organic fertilizers on yield and physico-chemical properties of organically grown tomato. Journal of Sustainable Agriculture 33(6): 658–673. DOI: https://doi.org/10.1080/10440040903073800
Saleh, A. R., Gusli, S., Ala, A., Neswati, R., & Sudewi, S. R. I. 2022. Tree density impact on growth, roots length density, and yield in agroforestry based cocoa. Biodiversitas 23(1): 496–506. DOI: https://doi.org/10.13057/biodiv/d230153
Sari, I. L., & Prijono, S. 2019. Infiltration and Water Storage on Different Shade Types in Coffee Land at Amadanom Village, Dampit Distric, Malang Regency. Jurnal Tanah Dan Sumberdaya Lahan 06(01): 1183–1192. DOI: https://doi.org/10.21776/ub.jtsl.2019.006.1.17 [Indonesia]
Sarmiento-Soler, A., Vaast, P., Hoffmann, M. P., Rötter, R. P., Jassogne, L., van Asten, P. J. A., & Graefe, S. 2019. Water use of Coffea arabica in open versus shaded systems under smallholder’s farm conditions in Eastern Uganda. Agricultural and Forest Meteorology 266–267: 231–242. DOI: https://doi.org/10.1016/j.agrformet.2018.12.006
Schroth, G. 1995. Tree root characteristics as criteria for species selection and systems design in agroforestry. Agroforestry Systems 30(1–2): 125–143. DOI: https://doi.org/10.1007/BF00708917
Senjobi, B. A., & Ogunkunle, A. O. 2011. Effect of different land use types and their implications on land degradation and productivity in Ogun State, Nigeria. Journal of Agricultural Biotechnology and Sustainable Development 3(1): 7–18. http://www.academicjournals.org/JABSD
Souza, R., Hartzell, S., Freire Ferraz, A. P., de Almeida, A. Q., de Sousa Lima, J. R., Dantas Antonino, A. C., & de Souza, E. S. 2021. Dynamics of soil penetration resistance in water-controlled environments. Soil and Tillage Research 205: 104768. DOI: https://doi.org/10.1016/j.still.2020.104768
Tennant, D. 1975. A Test of a Modified Line Intersect Method of Estimating Root Length. The Journal of Ecology 63(3): 995. DOI: https://doi.org/10.2307/2258617
Thomazini, A., Mendonça, E. S., Cardoso, I. M., & Garbin, M. L. 2015. SOC dynamics and soil quality index of agroforestry systems in the Atlantic rainforest of Brazil. Geoderma Regional 5: 15–24. DOI: https://doi.org/10.1016/j.geodrs.2015.02.003
Valentine, T. A., Hallett, P. D., Binnie, K., Young, M. W., Squire, G. R., Hawes, C., & Bengough, A. G. 2012. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Annals of Botany 110(2): 259–270. DOI: https://doi.org/10.1093/aob/mcs118
van Kanten, R., Schroth, G., Beer, J., & Jiménez, F. 2005. Fine-root dynamics of coffee in association with two shade trees in Costa Rica. Agroforestry Systems 63(3): 247–261. DOI: https://doi.org/10.1007/s10457-005-4163-9