Genetic diversity and phylogenetic analysis of mayfly Caenis (Insecta: Ephemeroptera) using Cytochrome C Oxidase I (COI) and 12s rRNA genes from Thailand




Abstract. Prakrongrak N, Boonsoong B, Monthatong M. 2023. Genetic diversity and phylogenetic analysis of mayfly Caenis (Insecta: Ephemeroptera) using Cytochrome C Oxidase I (COI) and 12s rRNA genes from ThailandBiodiversitas 24: 1989-1997Mayflies in genus Caenisis one of the top fifth species richnessbelonged to Family Caenidae. The present study aimed to use the partial mitochondrial Cytochrome COxidase subunit I (COI) and 12s rRNA nucleotide sequences for molecular species identification, diversity and phylogenetic relationships of mayflies in genus Caenis Stephens, 1835 species from Thailand. From a total of 37 specimens, thirteen nymphs were morphologically identified into five species: Caenis nasuta Malzacher, C. Picea Kimmins, C. ulmeriana Malzacher, C. cornigera Kang and Yang and C. longiforcipata Malzacher. The other 24 samples were Caenis sp.1 to sp.5. Partial COI sequences of all samples were compared with BOLD and GenBank for species identification. However, the result showed only genus-level identification as Caenis with greater than 80% similarity. For species delimitation, interspecific genetic distance among these species ranged from 14.4 to 26.6% (COI) and from 7.36 to 22.4% (12s rRNA). Intraspecific divergence levels were 0.0% to 2.35%. ABGD analysis of both genes divided data into 10 groups corresponding to 10 morphospecies of Caenis. The phylogenetic relationships of Caenis, COI and 12s rRNA genes also classified each species to well supported clusters. In addition, we report C. cornigera from Thailand for the first time. The COI and 12s rRNA phylogenetic trees indicate a close relationship between C. cornigera and C. longiforcipata, which is supported by their similar morphology.


Ajawatanawong P, Atkinson GC, Watson-Haigh NS, MacKenzie B, Baldauf SL. 2012. SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments. Nucleic Acids Research 40: 340-347. DOI: 10.1093/nar/gks561.
Allio R, Donega S, Galtier N, Nabholz B. 2017. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Molecular Biology and Evolution 34(11): 2762-2772. DOI: 10.1093/molbev/msx197.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3):403-410. DOI: 10.1016/S0022-2836(05)80360-2.
Ball SL, Hebert PDN, Burian SK, Webb JM. 2005. Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society 24: 508-524. DOI:10.1899/04-142.1.
Cai YY, Gao YJ, Zhang LP, Yu DN, Storey KB, Zhang JY. 2018. The mitochondrial genome of Caenis sp. (Ephemeroptera: Caenidae) and the phylogeny of Ephemeroptera in Pterygota. Mitochondrial DNA Part B 3(2): 577-579. DOI:10.1080/23802359.2018.1467239.
Chan AHE, Chaisiri K, Saralamba S, Morand S, Thaenkham U. 2021. Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths. Parasites &Vectors. 14:233. DOI: 10.1186/s13071-021-04737-y.
Eckert CG, Samis KE, Lougheed SC. 2008. Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond. Molecular Ecology 17(5): 1170-1188. DOI: /10.1111/j.1365-294X.2007.03659.x
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3:294-299. PMID: 7881515.
Gerber AS, Loggins R, Kumar S, Dowling TE. 2001. Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annual Review of Genetics 35: 539-566. DOI: 10.1146/annurev.genet.35.102401.091106.
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Hebert PD, Ratnasingham S, deWaard JR. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B. (Suppl 1): S96-99. DOI: 10.1098/rsbl.2003.0025.
Hickson RE, Simon C, Cooper A, Spicer GS, Sullivan J, Penny D. 1996. Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. Molecular Biology and Evolution 13(1): 150-169. DOI: 10.1093/oxfordjournals.molbev.a025552.
Hwang JM, Yoon TJ, Suh KI, Bae, YJ. 2013. Molecular phylogeny evidence of altitudinal distribution and habitat adaptation in Korean Ephemera species (Ephemeroptera: Ephemeridae). Entomological Research 43: 40-46. DOI: 10.1111/1748-5967.12008.
Kang SC, Yang CT. 1994. Caenidae of Taiwan (Ephemeroptera). Chinese Journal of Entomology 14: 93-113. DOI: 10.6660/TESFE.1994009.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology Evolution 35(6):1547-1549. DOI: 10.1093/molbev/msy096.
Malzacher P. 2013. Caenidae from East Kalimantan, Borneo (Insecta: Ephemeroptera). With a discussion on phylogeny of the new tribe Clypeocaenini, subfamily Caeninae. Stuttgarter Beiträge zur Naturkunde A. Neue Serie 6: 21-55.
Malzacher P. 2015. Revision of the oriental species of the genus Caenis Stephens (Insecta: Ephemeroptera: Caenidae). Neue Serie 8: 27-47.
Malzacher P, Sangpradub N. 2021. New mayfly species of Caenis and Kalimaenis from Thailand and descriptions of two new genera of the subfamily Caeninae (Ephemeroptera: Caenidae). Invertebrate Systematics 3: 1-33. DOI:10.18476/insy.v03.a1.
McCafferty PW. 1981. Aquatic Entomology: The Fishermen’s and Ecologists. Jones and Barlett Publishers, Inc., Boston.
McCafferty WP, Wang TQ. 2000. Phylogenetic systematics of the major lineages of Pannote mayflies (Ephemeroptera: Pannota). Transactions of the American Entomological Society 126: 9-101.
Pentinsaari M, Ratnasingham S, Miller SE, Hebert PDN. 2020. BOLD and GenBank revisited – Do identification errors arise in the lab or in the sequence libraries? PLoS ONE 15(4): e0231814. DOI: 10.1371/journal.pone.0231814.
Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864-1877. DOI: 10.1111/j.1365-294X.2011.05239.x.
Ratnasingham S, Hebert PDN. 2007. BOLD: The barcode of life data system ( Molecular Ecology Notes 7(3):355-364. DOI: 10.1111/j.1471-8286.2007.01678.x.
Sangpradub N, Boonsoong B. 2006. Identification of Freshwater Invertebrates of the Mekong River and its Tributaries. Mekong River Commission. Vientiane, PDR.
Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 37(1): 545–579. DOI: 10.1146/ annurev.ecolsys.37.091305.110018.
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87(6): 651-701. DOI: 10.1093/aesa/87.6.651.
Suh KI, Hwang JM, Bae YJ, Kang JH. 2019. Comprehensive DNA barcodes for species identification and discovery of cryptic diversity in mayfly larvae from South Korea: Implications for freshwater ecosystem biomonitoring. Entomological Research 49(1): 46-54. DOI: 10.1111/1748-5967.12334.
Tong XL, Dudgeon D. 2002. Three new species of the genus Caenis from Hong Kong, China (Ephemeroptera: Caenidae). Zoological Research 23: 232-238.
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert, PDN. 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 360: 1847-1857. DOI: 10.1098/rstb.2005.1716.
Williams HC, Ormerod SJ, Bruford MW. 2006. Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolution 37: 625-643. DOI:10.1016/j.ympev.2006.03.004.
Xu XD, Jia YY, Dai XY, Ma JL, Storey KB, Zhang JY and Yu DN. 2020. The mitochondrial genome of Caenis sp. (Ephemeroptera: Caenidae) from Fujian and the phylogeny of Caenidae within Ephemeroptera. Mitochondrial DNA Part B 5(1): 192–193. DOI: 10.1080/23802359.2019.1698986.