Parasitoid of cassava mealybug, Anagyrus lopezi (Hymenoptera: Encyrtidae): Mummy size, adult emergence, sex ratio, and parasitization level

##plugins.themes.bootstrap3.article.main##

FATAYATUN NAIMAH
DEWI SARTIAMI
NINA MARYANA
RULY ANWAR
PUDJIANTO

Abstract


Abstract. Naimah F, Sartiami D, Maryana N, Anwar R, Pudjianto. 2023. Parasitoid of cassava mealybug, Anagyrus lopezi (Hymenoptera: Encyrtidae): mummy size, adult emergence, sex ratio, and parasitization level. Biodiversitas 24: 1629-1634. The presence of Anagyrus lopezi as a natural enemy can reduce the population of Phenacoccus manihoti. This parasitoid was introduced from Thailand to Indonesia in 2014 to control cassava mealybugs. This research aims to determine the mummy length and width, adult emergence time, sex ratio, and parasitization level. This study was conducted in July-November 2022, while parasitoids and mealybugs were obtained from Bogor, Indonesia. The size of mummies was measured under Dino-light digital microscope; the emergence time was counted for 24 hours within six days, and the sex ratio of parasitoids was calculated based on the number of males and females emergence. The parasitization level was observed from four female parasitoids at 120, 160, and 200 of host population densities. The study showed the length and width of female mummies (n: 100) were 0.71 mm and 1.64, while the length and width of male mummies (n: 100) were shorter than female with 1.00 mm and 2.18 mm. The peak time of adult emergence is A. lopezi, i.e., during the daytime at 09:01-12:00 AM and 03:01-06:00 PM. The sex ratio of parasitoids from the field and laboratory was 1:0.49, 1:1.05, and 1:1.09, respectively. The one-way ANOVA and Tukey's test at a 5% significance level showed that the host population density of 120 nymphs was significantly different from other densities, with a parasitization level of 66.7%.


##plugins.themes.bootstrap3.article.details##

References
Abdulchalek B, Rauf A, Pudjianto. 2017. Kutu putih singkong, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae): persebaran geografi di Pulau Jawa dan rintisan pengendalian hayati. JHPT Trop 17:1–8. DOI: 10.23960/j. Hptt.1171-8.
Adriani E, Rauf A, Pudjianto. 2020. Influence of host stage on oviposition, development, and sex ratio of Anagyrus lopezi (DE SANTIS) (Hymenoptera : Encyrtidae), a parasitoid of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera:Pseudococcidae). J. HPT Trop 20(2) : 130-139. DOI : 10.23960/j.hptt.220130-139.
Bertschy C, Turlings TCJ, Bellotti A, Dorn S. 2000. Host stage preference and sex allocation in Aenasius vexans, an encyrtid parasitoid of cassava mealybug. Entomol Experimental et Appli. 95(3):283-291.
CABI. 2022. Invasive species compendium. Wallingford, UK: CABI International. https://www.cabi.org/isc/datasheet/40173.
Chen W, Weng Q, Nie R, Zhang H, Jing X, Wang M, Li Y, Mao J, Zhang L. 2021. Optimizing photoperiod, exposure time, and host-to-parasitoid ratio for mass-rearing of Telenomus remus, an egg parasitoid of Spodoptera frugiperda, on Spodoptera litura eggs. Insects 12: 1050-1064. DOI: 10.3390/insects12121050.
Daane K, Cooper M, Triapitsyn S, Walton V, Yokota G, Haviland D, Bentley W, Godfrey K, Wunderlich L. 2008. Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex. Calif Agr 62(4):167-176. DOI: 10.3733/ca.v062n04p167.
Dijken M, Neuenschwander P, Alphen J, Hammond W. 1991. Sex ratios in field populations of Epidinocarsis lopezi, an exotic parasitoid of the cassava mealybug, in Africa. Ecol Entomol 16:233–40. DOI: 10.1111/j.1365-2311.1991.tb00213.x.
Eueno T. 2015. Effects of host size and laboratory rearing on offspring development and sex ratio in the solitary parasitoid Agrothereutes lanceolatus (Hymenoptera : Ichneumonidae). Eur. J. Entomol. 112(2): 281–287. doi: 10.14411/eje.2015.048.
Fanani MZ, Rauf A, Maryana N, Nurmansyah A, Hindayana D. 2019. Geographic distribution of the invasive mealybug Phenacoccus manihoti and its introduced parasitoid Anagyrus lopezi in parts of Indonesia. Biodiversitas 20(12) : 3751-3757. DOI : 10.13057/biodiv/d210601.
Fanani MZ, Rauf A, Maryana N, Nurmansyah A, Hindayana D. 2020. Parasitism disruption by ants of Anagyrus lopezi (Hymenoptera : Encyrtidae), parasitoid of cassava mealybug. Biodiversitas 21(6): 2337-2343. DOI : 10.1305/biodiv/d210601.
Fantinou AA, Alexandri MP, Tsitsipis JA. 1998. Adult emergence rhythm of the egg-parasitoid Telenomus busseolae. Bio Control 43: 141-151.
Firlej A, Lucas E, Coderre D, Boivin G. 2010. Impact of host behavioral defenses on parasitization efficacy of a larval and adult parasitoid. Bio Control 55: 339-348. DOI: 10.1007/s10526-009-9262-5.
Godfray H. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, New Jersey.
Heimpel G, de Boer J. 2008. Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–30. DOI: 10.1146/annurev.ento.53.103106.093441.
Jones WT. 1982. Sex ratio and host size in a parasitoid. Behav Ecol Sociobiol. 10:207-210.
King BH. 1987. Offspring sex ratios in parasitoid wasps. Q. Rev Biol. 62(4): 367–396.
Karpova SG. 2006. The role of endogenous and exogenous factors in regulation of synchronous emergence of Trichogramma embryophagum Hartig and T. principium Sug. et Sor. (Hymenoptera : Trichogrammatidae). Entomol Rev, 86(3) : 252–263. DOI: 10.1134/S001387380603002X.
Lou YG, Zhang GR, Zhang WQ, Hu Y, Zhang J. 2014. Biological control of rice insect pests in China. Biol Control 68: 103-116. DOI: 10.1016/j.biocontrol.2013.06.011
Maharani JS, Rauf A, Maryana N. 2019. Masa hidup imago, progeni dan kemampuan parasitasi Anagyrus lopezi (De Santis) (Hymenoptera : Encyrtidae), parasitoid kutu putih singkong. J Entomol Indon 16(3) : 138-150. DOI: 10.5994/jei.16.3.138.
Mani M, Shirajavu C. 2016. Mealybugs and their management in agricultural and horticultural crops. Springer. New Delhi.
Meilin A, Trisyono YA, Martono E, Buchori D. 2012. Mass-rearing technique of Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymaridae) using plastic box. J Entomol Indon 9(1) : 7-13. DOI: 10.5994/jei.9.1.7.
Mills, NJ, Wajnberg E ? . 2008. Optimal Foraging Behavior and Efficient Biological Control Methods. Blackwell Publishing Ltd, Oxford, UK.
Muniappan R, Shepard BM, Watson GW, Carner GR, Rauf A, Sartiami D, Hidayat P, Afun JVK, Goergen G, Ziaur Rahman, A.K.M. 2011. New records of invasive insects (Hemiptera: Sternorrhyncha) in Southeast Asia and West Africa. Jour of Agri and Urb Entomol 26 (4), 167–174. DOI: 10.3954/1523-5475-26.4.167.
Nurkomar I. Azhar A, Buchori D. 2021. Sex allocation and field population sex ratio of Apanteles taragamae Viereck (Hymenoptera : Braconidae), a larval parasitoid of the cucumber moth Diaphania indica Saunders (Lepidoptera: Crambidae). De Gruyter 6: 673–681.
Rebu JU, Rauf A. 2018. Survei hama eksotik Phenacoccus manihoti Matile-Ferrero (Hemiptera : Pseudococcidae) pada tanaman singkong di Kabupaten Kupang. Prosiding Seminar Nasional Pertanian ke V Pengelolaan Pertanian Lahan Kering Berkelanjutan untuk Menunjang Kedaulatan Pangan. Kupang, 26 Oktober 2018. [Indonesian]
Rull J, Wharton R, Feder JL, Guillén L, Sivinski J, Forbes A, Aluja M. 2009. Latitudinal variation in parasitoid guild composition and parasitism rates of North American hawthorn infesting rhagoletis. Envi entomol. 38(3): 588-99. DOI: 10.1603/022.038.0310.
Saini A, Sharma PL. 2018. Functional response and mutual interference of Cotesia vestalis (Hymenoptera : Braconidae) on Plutella xylostella (Lepidoptera : Plutellidae). J Entomol Sci 53 (2): 162-170. DOI: 10.18474/JES17-36.1.
Samkova A, Hadrava J, Skuhrovec J, Jansta P. 2019. Host population density and presence of predators as key factors infuencing the number of gregarious parasitoid Anaphes favipes ofspring. Sci Rep 9, 6081. DOI : 10.1038/s41598-019-42503-4.
Sorensen JG, Addison MF, Terblanche JS. 2012. Mass-rearing of insects for pest management : challenges, synergies and advances from evolutionary physiology. Crop Pro 38 : 87 - 94. DOI:10.1016/j.cropro.2012.03.023.
Street C. 2015. Enhancing the effectiveness of biological control programs of invasive species by utilizing an integrated pest management approach. Inv Spec Adv Comm. 1-4. https://www.doi.gov/sites/doi.gov/files/uploads/isac_biocontrols_white_paper_rev.pdf.
Supartha IW, Yudha IKW, Wiradana PA, Susila IW. 2020. Response of parasitoids to invasive pest Phenacoccus manihoti Matile Ferrero (Hemiptera: Pseudococcidae) on cassava crop in Bali, Indonesia. Biodiversitas 21(10) : 4543-4549. DOI: 10.13057/biodiv/d211011
Ueno T. 1998. Adaptiveness of sex ratio control by the pupal parasitoid Itoplectis naranyane (Hymenoptera: Ichneumonidae) in response to host size. Evol Eco. 12:643-654.
Wang Y, Xiang M, Hou YY, Yang X, Dai H, Li J, Zang LS. 2019. Impact of egg deposition period on the timing of adult emergence in trichogramma parasitoids. Entomol General 39(3-4) : 339-346. DOI:10.1127/entomologia/2019/0896.
Wang Z, Liu YQ, Shi M, Huang JH, Chen X. 2019. Parasitoid wasps as effective biological control agents. Jour of Integ Agri 18(4) : 705-715. DOI: 10.1016/S2095-3119(18)62078-7.
Wardani N, Rauf A, Winasa IW, Santoso S. 2019. Effect of invasive pest Phenacoccus manihoti Matile-Ferrero (Hemiptera; Pseudococcidae) in cassava. Int Jour of Env, Agriculture and Biotechnology. 4. 1440-1445. DOI: 10.22161/ijeab.45.24.
Zeddies J, Schaab RP, Neuenschwander P, Herren HR. 2001. Economics of biological control of cassava mealybug in Africa. Agri Eco. 24 (2) : 209-219. DOI:10.1111/j.1574-0862.2001.tb00024.x.

Most read articles by the same author(s)

1 2 3 > >>