Diversity of aquatic plants in the Rote Dead Sea area, East Nusa Tenggara, Indonesia, based on rbcL marker

##plugins.themes.bootstrap3.article.main##

DESY WULANSARI LONTHOR
https://orcid.org/0000-0003-4844-1051
MIFTAHUDIN
https://orcid.org/0000-0002-5641-1090
KAYAT
https://orcid.org/0000-0003-3381-8653
ATRIYON JULZARIKA
https://orcid.org/0000-0002-4531-5327
LUKI SUBEHI
https://orcid.org/0000-0001-9741-0249
ELISA ISWANDONO
https://orcid.org/0000-0003-4719-671X
ALFRED O. M DIMA
AAN DIANTO
https://orcid.org/0000-0002-5009-9382
FAJAR SETIAWAN
https://orcid.org/0000-0002-7863-0067
MEDIA FITRI ISMA NUGRAHA
https://orcid.org/0000-0002-0799-3792

Abstract

Abstract. Lonthor DW, Miftahudin, Kayat, Julzarika A, Subehi L, Iswandono E, Dima AOM, Dianto A, Setiawan F, Nugraha MFI. 2023. Diversity of aquatic plants in the Rote Dead Sea area, East Nusa Tenggara, Indonesia, based on rbcL marker. Biodiversitas 24: 810-818. The Rote Dead Sea area in Rote Islands has two freshwater and 24 saltwater lakes. The saltwater lakes have salinity levels varied between 0-100 ppt. Every lake has specific aquatic plant species. Species identification through morphological analysis only has its limitations; therefore, DNA barcoding is a preference due to an effective, accurate, and faster method for species identification. In this study, we used the rbcL marker to identify and analyze the diversity of the aquatic plant species in lakes Ledulu, Oenduy, Oemasapoka, Oesotimori, and Landu Leko. Plants samples' DNA was amplified using rbcL primers, and the amplicons were sequenced. Species identification was based on morphological study and the rbcL sequence database. Diversity analyses were performed based on pairwise genetic distances, analysis of molecular variance, and genetic relationships based on the Kimura 2 parameter. The results showed that all 20 aquatic plants were correctly identified, and high genetic diversity was discovered. AMOVA analysis showed that genetic variations within the population were higher than among the population. All plant species were grouped into four groups based on the phylogenetic tree and fractional component analyses. The species belonging to the certain family were grouped in the same clade and the closely related plant families. The rbcL marker can be used to discriminate aquatic plant species and analyze their genetic diversity and relationships.

##plugins.themes.bootstrap3.article.details##

References
Abbas B, Kabes RJ, Mawikere NL, Ruimassa RMR, Maturbong RA. 2020. DNA barcode of Metroxylon sagu and others palm species using matk gene. Biodiversitas. 21(9):4047–4057. DOI: 10.13057/biodiv/d210916.
Ahmed S.S. 2022. DNA Barcoding in plants and animals: A critical review. Preprints. DOI:10.20944/preprints202201.0310.v1.
Ajawatanawong P. 2016. Molecular phylogenteics: Concept for a newcomer. Adv Biochem Eng Biotechnol. 160: 185-196. DOI:10.1007/10_2016_49
Alaklabi A, Arif IA, Bafeel SO, Alfarhan AH, Ahamed A, Thomas J, Bakir MA. 2014. Nucleotide based validation of the endangered plant Diospyros mespiliformis (Ebenaceae) by evaluating short sequence region of plastid rbcL gene. Plant Omics. 7(2):102–107.
Amandita FY, Rembold K, Vornam B, Rahayu S, Siregar IZ, Kreft H, Finkeldey R. 2019. DNA barcoding of flowering plants in Sumatra, Indonesia. Ecol Evol. 9(4):1858–1868. DOI:10.1002/ece3.4875.
Amir M, Hussain A, Asif M, Ahmed S, Alam H, Moga MA, Cocuz ME, Marceanu L, Blidaru A. 2021. Full-length genome and partial viral genes phylogenetic and geographical analysis of dengue serotype 3 isolates. Microorganisms. 9(2):1–14. DOI:10.3390/microorganisms9020323.
Andriani Y, Irawan B, Iskandar, Zidni I, Partasasmita R. 2019. Short communication: Diversity of duckweed (Araceae-Lemnoideae), morphological characteristics and its potentials as food sources for herbivorous fishes in West Java, Indonesia. Biodiversitas. 20(6):1617–1623. DOI:10.13057/biodiv/d200618.
Ausubel F, Dracopoli NC, Wildermuth M. 2011. Informatics for molecular biologists. Curr Protoc Mol Biol. 96(1):1–3. DOI:10.1002/0471142727.mb1900s96.
Campos JAS, Gómez CIO, Pais MDC. 2022. Study of academic plagiarism through multidimensional scaling and network analysis. Rev Educ. 397: 279–306. DOI:10.4438/1988-592X-RE-2022-397-548.
Chen L-Y, Chen J-M, Gituru RW, Wang Q-F. 2012. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol. 12: 30. DOI:10.1186/1471-2148-12-30.
Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinforma. 1: 47-50. DOI:10.1177/117693430500100003.
Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P. 2010. Calculations of population differentiation based on GST and D: forget GST but not all of statistics. Mol Ecol. 19: 3845-3852.
Giesen W. 1991. Checklist of Indonesian Freswater Aquatic Herbs. PHPA/AWB Sumatra Wetland Project Report, Bogor.
Gostel MR, Kress WJ. 2022. The expanding role of DNA Barcodes: Indispensable tools for ecology, evolution, and conservation. Diversity. 14(3):1–23. DOI:10.3390/d14030213.
Ismail M, Ahmad A, Nadeem M, Javed MA, Khan SH, Khawaish I, Sthanadar AA, Qari SH, Alghanem SM, Khan KA, et al. 2020. Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers. Saudi J Biol Sci. 27(12):3735–3742. DOI:10.1016/j.sjbs.2020.08.020.
Julzarika A. 2021. The Updated DTM Model using ALOS PALSAR/PALSAR-2 and Sentinel-1 Imageries for Dynamic Topography. [Disertation]. Gadjah Mada University, Yogyakarta. [Indonesia]
Julzarika A, Aditya T, Subaryono S, Harintaka H. 2021. Vertical accuracy evaluation of digital terrain model (Dtm) alos palsar-2 in rote dead sea area – Indonesia. Geod List. 75(1):9–28.
Julzarika A, Laksono DP, Subehi L, Dewi EK, Kayat K, Sofiyuddin HA, Nugraha MFI. 2018. Comprehensive integration system of saltwater environment on Rote Island using a multidisciplinary approach. J Degrad Min L Manag. 5(53):2502–2458. DOI:10.15243/jdmlm.
Kim SY, Manghisi A, Morabito M, Yang EC, Yoon HS, Miller KA, Boo SM. 2014. Genetic diversity and haplotype distribution of Pachymeniopsis gargiuli sp. nov. and P. lanceolata (Halymeniales, Rhodophyta) in Korea, with notes on their non-native distributions. J Phycol. 50(5):885–896. DOI:10.1111/jpy.12218.
Korotkov E V, Kostenko DO. 2022. Application of the MAHDS Method for Multiple Alignment of Highly Diverged Amino Acid Sequences. Int J Mol Sci. 23(7). DOI: 10.3390/ijms23073764.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549. DOI:10.1093/molbev/msy096.
Li G, Chen Y, Zhao X, Yang J, Wang X, Li X, Hu S, Hou H. 2022. Genome-wide analysis of the Growth-regulating Factor (GRF) family in aquatic plants and their roles in the ABA-induced turion formation of spirodela polyrhiza. Int J Mol Sci. 23(18): 10485. DOI:10.3390/ijms231810485.
Molinari B, Stewart-Koster B, Malthus TJ, Bunn SE. 2021. Assessing spatial variation in algal productivity in a tropical river floodplain using satellite remote sensing. Remote Sens. 13(9):1–19. DOI:10.3390/rs13091710.
Newell PD, Fricker AD, Roco CA, Chandrangsu P, Merkel SM. 2013. A small-group activity introducing the use and interpretation of BLAST. J Microbiol Biol Educ. 14(2):238–243. DOI:10.1128/jmbe.v14i2.637.
Nugraha MFI, Putra TA, Yunita R, Enggarini W, Erlinawati I, Sahroni D, Subamia IW, Ardi I, Cahyadi A. 2022. The genetic diversity of genus Bucephalandra traded in the aquatic biota markets in Jakarta and the surrounding area based on RbCl markers. Acta Hortic. 1334:389–396. DOI: 10.17660/ActaHortic.2022.1334.48.
Pardi F, Gascuel O, Pardi F, Gascuel O. 2016. Distance-based methods in phylogenetics In Kliman RM (1st eds) Encyclopedia of Evolutionary Biology, Elsevier,Amsterdam.
Rinawati DY, Dinarti D. 2021. Genetic diversity of sugar palm ( Arenga pinnata ) derived from nine regions in Indonesia based on SSR markers. Biodiversitas. 22(9):3749–3755. DOI:10.13057/biodiv/d220919.
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 34(12):3299–3302. DOI:10.1093/molbev/msx248.
Ryman N, Leimar O. 2009. GST is still a useful measure of genetic differentiation- a comment on Jost’s D. Mol Ecol. 18(10):2084–2087. DOI: 10.1111/j.1365-294X.2009.04187.x.
Stevanus, Pharmawati M. 2021. Biodiversity and phylogenetic analyses using DNA barcoding rbcL gene of seagrass from Sekotong, west lombok, Indonesia. Biodiversitas. 22(1):50–57. DOI:10.13057/biodiv/d220107.
Subhan B, Bengen DG, Ferse S, Dzulfannazhir F, Izza LM, Anggraini NP, Santoso P, Arafat D, Iqbal Sani LM, Madduppa H. 2022. DNA Barcoding of the Soft Coral, Clavularia inflata, shows two major groups across Indonesian Coral Reefs. J Mar Sci. 27(1):1–12. DOI: 10.14710/ik.ijms.27.1.1-12.
Tan PL, Lim PE, Lin SM, Phang SM, Draisma SGA, Liao LM. 2015. Foliose Halymenia species (Halymeniaceae, Rhodophyta) from Southeast Asia, including a new species, Halymenia malaysiana sp. Bot Mar. 58(3):203–217. DOI:10.1515/bot-2015-0004.
Trujillo-Argueta S, del Castillo RF, Tejero-Diez D, Matias-Cervantes CA, Velasco-Murguía A. 2021. DNA barcoding ferns in an unexplored tropical montane cloud forest area of southeast Oaxaca, Mexico. Sci Rep. 11(1):1–12. DOI:10.1038/s41598-021-02237-8.
Wang L, Zhou QP, Liu JM, Shi GH. 2021. Genetic diversity of natural Morchella spp. from the Southern Gansu Province Based on rDNA-ITS, China. Agric Sci Dig. 41(4):560–565.DOI:10.18805/ag.D-276.
Wood LE, Andriamahefazafy MZ, Guilder J, Kull CA, Shackleton RT. 2021. Lake users’ perceptions of environmental change: Ecosystem services and disservices associated with aquatic plants. Water. 13(11):1–15. DOI:10.3390/w13111459.
Wynns JT, Lange CBA. 2014. A comparison of 16 DNA regions for use as phylogenetic markers in the pleurocarpous moss genus Plagiothecium (hypnales). Am J Bot. 101(4):652–669. DOI:10.3732/ajb.1300269.
Zhou A, Tian P, Li Z, Li X, Tan X, Zhang Z, Qiu L, He H, Ding W, Li Y. 2020. Genetic diversity and differentiation of populations of Chlorops oryzae (Diptera, Chloropidae). BMC Ecol. 20(1):1–14. DOI: 10.1186/s12898-020-00293-8.

Most read articles by the same author(s)