A new strain of bacteria isolated from chemically saturated corn rhizosphere under the dominance of the mineral kaolinite

##plugins.themes.bootstrap3.article.main##

SUKMAWATI
IRADHATULLAH RAHIM
HARSANI
ASWAR SYAFNUR
YADI ARODHISKARA
AHMAD SELAO
LUKI FATHIA NURUL ANISA

Abstract

Abstract. Sukmawati, Rahim I, Harsani, Syafnur A, Arodhiskara Y, Selao A, Anisa LFN. 2023. A new strain of bacteria isolated from chemically saturated corn rhizosphere under the dominance of the mineral kaolinite. Biodiversitas 24: 1886-1894. The kaolinite mineral that dominates the cornfield reduces soil fertility and the bacterial community. The discovery of adaptive bacterial strains on kaolinite dominant land is a biological strategy to improve soil fertility because it is part of the root ecosystem. This study aims to obtain adaptive and superior bacteria in producing IAA hormones and fixing nitrogen. The soil analysis method uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis to characterize clay minerals and soil chemical content. While the bacterial characterization was carried out morphologically and physiologically. After that, followed by the 16S rRNA gene sequence analysis. The type of kaolinite clay mineral dominates the soil samples with a SiO2 content of >40%. A total of 17 bacterial isolates were purified, 12 had round colony shapes, and 5 had irregular shapes dominated by cream color, 11 of which were identified as Gram-positive and 6 Gram-negative bacteria. RJ1T isolates/isolated produced the highest auxin (0.141 mgL-1), while RJ1P isolates/isolated had the highest nitrogen fixation ability (0.975%) and were not pathogenic. The isolates were closely related to the Nocardioides marinisabuli strain RA2816S ribosomal RNA gene (99.57%). Thus, RJ1PI bacterial isolate is an adaptive bacteria that can be formulated as a biological agent to increase maize productivity in the dry land.

##plugins.themes.bootstrap3.article.details##

References
Ali, A. (2022). X-ray Diffraction Techniques for Mineral Characterization?: A Review for Engineers of the Fundamentals , Applications , and Research Directions.
Aliasghar, J., Garosi, U., Oustan, S., & Ahmadi, A. (2014). The effect of clay minerals on soils interrill erodibility factor and management in Dast- e Tabriz. 2(2), 23–31. https://journal.bakrie.ac.id/index.php/APJSAFE/article/viewFile/785/pdf
Arfarita, N., Muhibuddin, A., & Imai, T. (2019). Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter. J. Degrade. Min. Land Manage, 6, 1617–1623. https://doi.org/10.15243/jdmlm. 2019.062.1617.
Ariskina, E. (2021). Nocardioidaceae. January. https://doi.org/10.1002/9781118960608.fbm00042
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2010). The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Barreca, S., Orecchio, S., & Pace, A. (2014). The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: Isothermal and kinetic studies. Applied Clay Science, 99, 220–228. https://doi.org/10.1016/j.clay.2014.06.037
Baudoin, E., Benizri, E., & Guckert, A. (2003). Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology and Biochemistry, 35(9), 1183–1192. https://doi.org/10.1016/S0038-0717(03)00179-2
Benizri, E., & Kidd, P. S. (2018). The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. November 2017. https://doi.org/10.1007/978-3-319-61899-9
Bish, D. L. (1993). Rietveld Refinement of the Kaolinite Structure at 1.5 K •. 43(December), 410613.
Bradford, S. A., Onica, V. E. R., Morales, L., Zhang, W. E. I., Harvey, R. W., Packman, A. I., Mohanram, A., & Welty, C. (2013). Transport and Fate of Microbial Pathogens. 775–893. https://doi.org/10.1080/10643389.2012.710449
Carson, J. K., Gonzalez-quin, V., Murphy, D. V, Hinz, C., Shaw, J. A., & Gleeson, D. B. (2010). Low Pore Connectivity Increases Bacterial Diversity in Soil. 76(12), 3936–3942. https://doi.org/10.1128/AEM.03085-09
Dubourg, G., Sankar, S. A., Rathored, J., Lagier, J., Robert, C., Couderc, C., Papazian, L., Raoult, D., & Fournier, P. (2016). Noncontiguous fi nished genome sequence and description of Nocardioides. New Microbes and New Infections, 10, 47–57. https://doi.org/10.1016/j.nmni.2016.01.001
Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156(October 2017), 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
FAO. (2008). Guide to laboratory establishment for plant nutrient analysis, Food and Agriculture Organization of the United Nations, Rome, 2008. In M. R. Motsara (Ed.), Fao Fertilizer and Plant Nutrition Bulletin 19. Electronic Publishing Policy and Support Branch Communication Division FAO. http://www.fao.org/3/i0131e/i0131e.pdf
Fatmawati, U. M. I., Meryandini, A., Nawangsih, A. A., & Wahyudi, A. T. R. I. (2019). Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth. 20(10), 2970–2977. https://doi.org/10.13057/biodiv/d201027
Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., & Caporaso, J. G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21390–21395. https://doi.org/10.1073/pnas.1215210110
Fomina, M. (2020). Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications.
García-Salamanca, A., Molina-Henares, M. A., van Dillewijn, P., Solano, J., Pizarro-Tobías, P., Roca, A., Duque, E., & Ramos, J. L. (2013). Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microbial Biotechnology, 6(1), 36–44. https://doi.org/10.1111/j.1751-7915.2012.00358.x
Gelsomino, A., Keijzer-wolters, A. C., Cacco, G., & Elsas, J. D. Van. (1999). Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis . 38, 1–15.
Gupta Sood, S. (2003). Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiology Ecology, 45(3), 219–227. https://doi.org/10.1016/S0168-6496(03)00155-7
Horabik, J., & Jozefaciuk, G. (2021). Structure and strength of kaolinite – soil silt aggregates?: Measurements and modeling. Geoderma, 382(August 2020), 114687. https://doi.org/10.1016/j.geoderma.2020.114687
Jun, D., Cho, Y. E., Young, C., & Nam, H. Y. (2021). Nocardioides luti sp . nov ., belonging to the family Nocardioidaceae isolated from kaolinite , exhibiting the biosynthesis potential of alkylresorcinol. Antonie van Leeuwenhoek, 2. https://doi.org/10.1007/s10482-021-01570-2
Kesaulya, H., Virgowati, H. J., Gratiana, T., & Celvia, N. (2017). Potency of Bacillus spp from Potato Rhizosphere as Active Ingredients for Biostimulant Formulation. 11(10), 74–80. https://doi.org/10.5539/mas.v11n10p74
Kome, G. K., Enang, R. K., & Tabi, F. O. (2019). Influence of Clay Minerals on Some Soil Fertility Attributes?: A Review. 155–188. https://doi.org/10.4236/ojss.2019.99010
Kumari, N., & Mohan, C. (2021). Basics of Clay Minerals and Their Characteristic Properties. https://doi.org/10.5772/intechopen.97672
Lajevardia, S. H., & Shafieib, H. (2023). Investigating the biological treatment effect on fine-grained soil resistance against wind erosion?: An experimental case study. Aeolian Research, 60(January). https://doi.org/https://doi.org/10.1016/j.aeolia.2022.100841
Lee, D. W., Hyun, C. G., & Lee, S. D. (2007). Nocardioides marinisabuli sp. nov., a novel actinobacterium isolated from beach sand. International Journal of Systematic and Evolutionary Microbiology, 57(12), 2960–2963. https://doi.org/10.1099/ijs.0.65127-0
Lori, M., Symnaczik, S., Mäder, P., De Deyn, G., & Gattinger, A. (2017). Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-Regression. PLoS ONE, 12(7), 1–25. https://doi.org/10.1371/journal.pone.0180442
Mani, S., Merino, A., García-oliva, F., & Riotte, J. (2018). Soil properties and organic matter quality in relation to climate and vegetation in southern Indian tropical ecosystems. 2014, 80–90.
Mcmahon, S., Anderson, R. P., Saupe, E. E., & Briggs, D. E. G. (2016). Experimental evidence that clay inhibits bacterial decomposers , with implications for the preservation of organic fossils. Geology, 44(10), 1–20.
Mohsen, Q., & El-maghraby, A. (2010). Characterization and assessment of Saudi clays raw material at different area. Arabian Journal of Chemistry, 3(4), 271–277. https://doi.org/10.1016/j.arabjc.2010.06.015
Navarro-Noya, Y. E., Hernández-Mendoza, E., Morales-Jiménez, J., Jan-Roblero, J., Martínez-Romero, E., & Hernández-Rodríguez, C. (2012). Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Applied Soil Ecology, 62, 52–60. https://doi.org/10.1016/j.apsoil.2012.07.011
Pacheco-leyva, I., Pezoa, F. G., & Díaz-barrera, A. (2016). Alginate Biosynthesis in Azotobacter vinelandii?: Overview of Molecular Mechanisms in Connection with the Oxygen Availability. 2016, 11–13.
Patel, S., Jinal, H. N., & Amaresan, N. (2017). Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli (Capsicum annuum) seedling under salt stress. Biocatalysis and Agricultural Biotechnology, 12(September), 85–89. https://doi.org/10.1016/j.bcab.2017.09.002
Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S., & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6548–6553. https://doi.org/10.1073/pnas.1302837110
Raheem, A., Shaposhnikov, A., Belimov, A. A., & Dodd, I. C. (2017). Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science ISSN:, 0340(August). https://doi.org/10.1080/03650340.2017.1362105
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4(10), 1340–1351. https://doi.org/10.1038/ismej.2010.58
Sá, C., Cardoso, P., & Figueira, E. (2019). Alginate as a feature of osmotolerance differentiation among soil bacteria isolated from wild legumes growing in Portugal. Science of the Total Environment, 681, 312–319. https://doi.org/10.1016/j.scitotenv.2019.05.050
Setyowati, M., Susilowati, D. N., & Suryadi, Y. (2017). Rhizosphere Microbial Genetic Resources as PGPR Potential Isolated from Maize Inbred Populations Var.Bisma. Satreps Proceedia, P.13, 140–152.
Singh, B., & Schulze, D. G. (2015). Soil Minerals and Plant Nutrition. Nature Education Knowledge, 6(1), 1. https://www.nature.com/scitable/knowledge/library/soil-minerals-and-plant-nutrition-127881474/
Sri Sudewi, Ala, A., Baharuddin, & Muh Farid. (2020). The isolation, characterization endophytic bacteria on indole-3-acetic acid-producing and phosphate solubilizing from roots of local rice plant Kamba in Bada Valley, Central Sulawesi. Biodiversitas Journal of Biological Diversity, 21(4), 1614–1624. https://doi.org/10.13057/biodiv/d210442
Sufardi, S., Arabia, T., Khairullah, K., & Aprian, I. (2021). IOP Conference Series?: Earth and Environmental Science Particle size distribution and clay minerals in dryland soils of Aceh Besar , Indonesia Particle size distribution and clay minerals in dryland soils of Aceh Besar , Indonesia. Earth and Environmental Science 922. https://doi.org/10.1088/1755-1315/922/1/012013
Sukmawati, Ala, A., Patandjengi, B., & Gusli, S. (2020). Exploring of promising bacteria from the rhizosphere of maize, cocoa and lamtoro. Biodiversitas, 21(12), 5665–5673. https://doi.org/10.13057/biodiv/d211224
Tahir, D., Ilyas, S., Abdullah, B., Armynah, B., Kim, K., & Kang, H. J. (2019). Modification in electronic , structural , and magnetic properties based on composition of composites Copper ( II ) Oxide ( CuO ) and Carbonaceous material Modi fi cation in electronic , structural , and magnetic properties based on composition of composit. Ii. https://doi.org/https://doi.org/10.1016/0922-338X(91)90208-X
van Teeseling, M. C. F., de Pedro, M. A., & Cava, F. (2017). Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Frontiers in Microbiology, 8(JUL), 1–18. https://doi.org/10.3389/fmicb.2017.01264
Wang, Q., Jiang, X., Guan, D., Wei, D., Zhao, B., & Ma, M. (2017). Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. November. https://doi.org/10.1016/j.apsoil.2017.12.007
Whitman, T., Neurath, R. A., Ning, D., & Zhou, J. (2017). Microbial community assembly differs by mineral type in the rhizosphere. May 2018. https://doi.org/10.1101/128850
Wu, H., Chen, W., Rong, X., Cai, P., Dai, K., & Huang, Q. (2014). Adhesion of Pseudomonas putida onto kaolinite at different growth phases. Chemical Geology, 390, 1–8. https://doi.org/10.1016/j.chemgeo.2014.10.008
Yan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). In fl uence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 1–8. https://doi.org/10.1016/j.iswcr.2015.11.003
Yang, Y., Wang, N., Guo, X., Zhang, Y., & Ye, B. (2017). Comparative analysis of bacterial community structure in the rhizosphere of maize by highthroughput pyrosequencing. PLoS ONE, 12(5), 1–11. https://doi.org/10.1371/journal.pone.0178425
Zhang, H., Gao, Z., Shi, M., & Fang, S. (2020). Soil bacterial diversity and its relationship with soil co2 and mineral composition: A case study of the laiwu experimental site. International Journal of Environmental Research and Public Health, 17(16), 1–20. https://doi.org/10.3390/ijerph17165699

Most read articles by the same author(s)