The effect of peat soil and sandy soil on the growth of Eleutherine palmifolia and arbuscular mycorrhizal diversity

##plugins.themes.bootstrap3.article.main##

TITIN APUNG ATIKAH
ENY WAHYUNING PURWANTI

Abstract

Abstract. Atikah TA, Purwanti EW. 2023. The effect of peat soil and sandy soil on the growth of Eleutherine palmifolia and arbuscular mycorrhizal diversity. Biodiversitas 24: 4373-4381. Arbuscular mycorrhizae as root symbionts is capable of inducing plant growth on marginal lands. It has the potential to be used as fertilizer or soil enhancer. Mycorrhizae are commonly found in peat soils endemic to the island of Borneo. Peat soil contains a lot of organic matter needed by mycorrhizae. The development of plant roots also influences the process of mycorrhizal colonization. Apart from functioning as fertilizer, mycorrhizae is associated with Dayak shallot (Eleutherine palmifolia Merr.; syn.: Sisyrinchium palmifolium L.) roots can also overcome fusarium wilt disease. This study aimed to explore the potential of peat soil to support the growth of E. palmifolia 's and to identify mycorrhizal colonization associated with the plant. Two soil types were used for planting E. palmifolia: peat and sand. Parameters observed were plant height, number of leaves, morphospecies and each population of arbuscular mycorrhizae. The plant growth data were tabulated and analyzed with an analysis of variance, and the population of arbuscular mycorrhizae was analyzed for the level of similarity in the structure of species. The results showed that peat soil promoted the growth of E. palmifolia better than sandy soil. The similarity value of mycorrhizal species structure was 28.7%. It means that the structure of mycorrhizal species on peat were differed that on sand media. Mycorrhizae successfully explored from sandy soil were 10 morpho-species with a population of 1.441 spores, while mycorrhizae from peat soil contained 6 morphospecies with a population of 462 spores.

##plugins.themes.bootstrap3.article.details##

References
Ait-El-Mokhtar, M., R. Ben Laouane, M. Anli, A. Boutasknit, S. Wahbi, et al. 2019. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hortic. (Amsterdam). 253(March): 429–438. doi: 10.1016/j.scienta.2019.04.066.
Antoun, H. 2012. Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Eng. 46: 62–67. doi: 10.1016/j.proeng.2012.09.446.
Atikah, T.A., Wardiyati, T. and Nihayati, E. 2017. The growth patterns and eleutherine content of dayak onion (Eleutherine palmifolia Merr.) in sandy mineral soil and peat soil. International Journal of Biosciences (IJB) 10(04), pp. 222–231. doi: 10.12692/ijb/10.4.222-231.
Bharti, N., D. Barnawal, S. Shukla, S.K. Tewari, R.S. Katiyar, et al. 2016. Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Ind. Crops Prod. 83: 717–728. doi: 10.1016/j.indcrop.2015.12.021.
Borges, E.S. et al. 2020. Botanical studies, antimicrobial activity and cytotoxity of Eleutherine bulbosa (Mill.) Urb. Research, Society and Development 9(11), p. e3369119992. Available at: https://rsdjournal.org/index.php/rsd/article/view/9992.
Brundett, M. et al. 1994. Mycorrhizas for Plantation Forestry in Asia.In: ACIAR Proceedings No. 62. p.146.
Couto, C.L.L., Moraes, D.F.C.C., Socorro S, M. do, Cartágenes, S.S., Flavia, M.M. and Guerra, R.N. 2016. Eleutherine bulbous (Mill.) Urb.: A review study. Journal of Medicinal Plants Research 10(21), pp. 286–297. doi: 10.5897/JMPR2016.6106.
Fransira, I., Yanuhar, U. and Maftuch, M. 2019. Potential of Dayak Onion (Eleutherine palmifolia (L) Merr) Extract As Antibacterial Against Pseudomonas fluorescens. The Journal of Experimental Life Sciences 9(2), pp. 76–80. doi: 10.21776/ub.jels.2019.009.02.03.
Fransira, I., Yanuhar, U., Noercholis, A. and Maftuch 2020. The effect of Eleutherine palmifolia root extract on the hematology of Oreochromis niloticus infected with Pseudomonas fluorescens. AACL Bioflux 13(1), pp. 346–359.
Harrison, M.J. (1997) The arbuscular mycorrhizal symbiosis?: an underground association. Trends in Plant Science. 2 (February), 1061–1067.
Jiang, H. et al. 2020. The chemical constituents from the active fractions of Eleutherine bulbosa with their antimicrobial activity. Natural Product Research 34(12), pp. 1743–1749. Available at: https://doi.org/10.1080/14786419.2018.1530229.
Jiménez-Moreno, M.J., M. del C. Moreno-Márquez, I. Moreno-Alías, H. Rapoport, and R. Fernández-Escobar. 2018. Interaction between mycorrhization with Glomus intraradices and phosphorus in nursery olive plants. Sci. Hortic. (Amsterdam). 233(January): 249–255. doi: 10.1016/j.scienta.2018.01.057.
Insanu, M., Kusmardiyani, S. and Hartati, R. 2014. Recent Studies on Phytochemicals and Pharmacological Effects of Eleutherine Americana Merr. Procedia Chemistry 13(December), pp. 221–228. doi: 10.1016/j.proche.2014.12.032.
Kamarudin, A.A., Mohd. Esa, N., Saad, N., Sayuti, N.H. and Ab. Razak, N.A. 2020. Heat assisted extraction of phenolic compounds from Eleutherine bulbosa (Mill.) bulb and its bioactive profiles using response surface methodology. Industrial Crops and Products 144, p. 112064. Available at: https://www.sciencedirect.com/science/article/pii/S092666901931074X.
Koegel, S., D. Brulé, A. Wiemken, T. Boller, and P.E. Courty. 2015. The effect of different nitrogen sources on the symbiotic interaction between Sorghum bicolor and Glomus intraradices: Expression of plant and fungal genes involved in nitrogen assimilation. Soil Biol. Biochem. 86(3): 159–163. doi: 10.1016/j.soilbio.2015.03.003.
Matysek, M., J. Leake, S. Banwart, I. Johnson, S. Page, et al. 2019. Impact of fertiliser, water table, and warming on celery yield and CO 2 and CH 4 emissions from fenland agricultural peat. Sci. Total Environ. 667: 179–190. doi: 10.1016/j.scitotenv.2019.02.360.
Magurran, A.E. 2003 Measuring Biological Diversity. 1st edition. Victoria australia, Blackwell Publishing Company.
Nadeem, S.M., M. Ahmad, Z.A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32(2): 429–448. doi: 10.1016/j.biotechadv.2013.12.005.
Ortas, I. 2015. Comparative analyses of Turkey agricultural soils: Potential communities of indigenous and exotic mycorrhiza species’ effect on maize (Zea mays L.) growth and nutrient uptakes. Eur. J. Soil Biol. 69: 79–87. doi: 10.1016/j.ejsobi.2015.05.006.
Pakarinen, A., H. Fritze, S. Timonen, P. Kivijärvi, and S. Velmala. 2021. Boreal soil microbial diversity and seed onion mycorrhizal colonization is unaffected by preceding one season crop cultivation. Eur. J. Soil Biol. 105: 335–346. doi: 10.1016/j.ejsobi.2021.103335.
Pankaj, U., Singh, G. & Verma, R.K. 2019. Microbial approaches in management and restoration of marginal lands. New and Future Developments in Microbial Biotechnology and Bioengineering. [Online] (2005), Elsevier B.V. Available from: doi:10.1016/B978-0-12-818258-1.00020-0.
Quadros Gomes, A.R., N.C. da Rocha Galucio, K.C.O. de Albuquerque, H.P.C. Brígido, E.L.P. Varela, et al. 2021. Toxicity evaluation of Eleutherine plicata Herb. extracts and possible cell death mechanism. Toxicol. Reports 8(July): 1480–1487. doi: 10.1016/j.toxrep.2021.07.015.
Rajtor, M., and Z. Piotrowska-Seget. 2016. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere 162: 105–116. doi: 10.1016/j.chemosphere.2016.07.071.
Rezaei-Chiyaneh, E., R. Amirnia, M. Amani Machiani, A. Javanmard, F. Maggi, et al. 2020. Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Sci. Hortic. (Amsterdam). 261(October): 108951. doi: 10.1016/j.scienta.2019.108951.
Seleiman, M.F., A. Santanen, J. Kleemola, F.L. Stoddard, and P.S.A. Mäkelä. 2013. Improved sustainability of feedstock production with sludge and interacting mycorrhiza. Chemosphere 91(9): 1236–1242. doi: 10.1016/j.chemosphere.2013.02.004.
Subramaniam, K., S. Suriyamoorthy, F. Wahab, F.B. Sharon, and G.R. Rex. 2012. Antagonistic activity of Eleutherine palmifolia Linn. Asian Pacific J. Trop. Dis. 2(SUPPL.1): S491–S493. doi: 10.1016/S2222-1808(12)60208-4.
Sun, X., J. Shi, and G. Ding. 2017. Combined effects of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum. Appl. Soil Ecol. 119(April): 384–391. doi: 10.1016/j.apsoil.2017.07.030.
Wahyunto, W., Supriatna, W. & Agus, F. (2013). Land Use Change And Recommendation For Sustainable Development Of Peatland For Agriculture: Case Study at Kubu Raya and Pontianak Districts, West Kalimantan. Indonesian Journal of Agricultural Science. [Online] 11 (1), 32. Available from: doi:10.21082/ijas.v11n1.2010.p32-40.
Wang, Z., Xu, G. & Xu, H. 2017 Determining? diversity of protozoa for bioassessment in coastal ecosystems using community-based dispersions. Ecological Indicators. [Online] Available from: doi:10.1016/j.ecolind.2016.08.001.
Waongo, A., N.M. Ba, L.C. Dabiré-Binso, and A. Sanon. 2015. Diversity and community structure of insect pests developing in stored sorghum in the Northern-Sudan ecological zone of Burkina Faso. J. Stored Prod. Res. 63: 6–14. doi: 10.1016/j.jspr.2015.05.002.
Wei, F., R. Fan, T. Passey, X. ping Hu, and X. Xu. 2016. Identification of candidate soil microbes responsible for small-scale heterogeneity in strawberry plant vigour. J. Integr. Agric. 15(9): 2049–2058. doi: 10.1016/S2095-3119(16)61354-0.