Identification of bacterial isolates of Tumpang and Bumiasri (East Java, Indonesia) using 16S rRNA gene sequencing and screening of their active compounds as a biofertilizer

##plugins.themes.bootstrap3.article.main##

INDAH PRIHARTIN
AKHIS SOLEH ISMAIL
HENIK SUKORINI
FATIMAH NURSANDI
AULIA ZAKIA
FARUSA ANGGITA RISYAWAL FARAHDINA

Abstract

Abstract. Prihartin I, Ismail AS, Sukorini H, Nursandi F, Zakia A, Farahdina FAR. 2023. Identification of bacterial isolates of Tumpang and Bumiasri (East Java, Indonesia) using 16S rRNA gene sequencing and screening of their active compounds as a biofertilizer. Biodiversitas 24: 3338-3343. The objective of the study was to identify Tumpang (TPG) and Bumiasri (BAS) isolates using 16S rRNA gene sequencing and screen-on biofertilizer active-compounds. Research materials used in the study were bacterial isolates of TPG isolated from Tumpang area and BAS isolated from Bumiasri area, East Java, Indonesia. The variables observed was isolate identification using 16S-rRNA gene and screen for active compounds for biofertilizer using liquid chromatography tandem-mass spectrometry (LC-MS/MS-QTOF). The biofertilizer composed of mineral mix (P, K, Fe, Mg and S), rice-straw extract, water and TPG isolate as C1 Biofertilizer and BAS as C2 Biofertilizer. The sequencing results of TPG isolates obtained DNA sequences that resembled the bacterium Lysinibacillus fusiformis with a similarity of 99%, while BAS isolate resembled the bacterium Lysinibacillus macroides with a similarity of 99%. These genes sequences have been submitted to GenBank under the bacterial names L. fusiformis BIP-211 and L. macroides BIP-212 respectively. The LC-MS/MS-QTOF screening result shows that the C1 biofertilizer contain benzoic-acid compound, 4-(butylamino), methoxycinnamyl P-coumarate. Futhermore, betaine (glycine betaine) and benzoic-acid 4-(butylamino) was identified in C2. So, the TPG and BAS isolates was confirmed as L. fusiformis BIP-211 and L. macroides BIP-212 respectively. The both C1 and C2 biofertilizer consists two active-compounds.

##plugins.themes.bootstrap3.article.details##

References
Amadi V, Wemedo SA, Amadi LO. 2021. Assessing the Nutrient Quality of Biofertilizer Produced from Organic Waste Assessing the Nutrient Quality of Biofertilizer Produced from Organic Waste Using Lysinibacillus Macroides and Alcaligens Faecalis. South Asian Journal of Research in Microbiology 10(1):25–32. doi: 10.9734/sajrm/2021/v10i130220.
Chung IM, Ahn JK, Yun SJ. 2001. Identification of Allelopathic Compounds from Rice (Oryza Sativa L.) Straw and Their Biological Activity. Canadian Journal of Plant Science 81(4):815–19. doi: 10.4141/P00-191.
Church DL, Cerutti L, Gürtler A, Griener T, Zelazny A, Emler S. 2020. Performance and Application of 16S RRNA Gene Cycle Sequencing for Routine Identification of Bacteria in The. American Society for Microbiology 33(4):1–74. doi: https://doi.org/10.1128/CMR.00053-19.
Civelek C, Yildirim E. 2019. Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition. Atatürk Univ., J. of the Agricultural Faculty 50(2):153–58. doi: 10.17097/ataunizfd.520407.
Cui S, Ma X, Wang X, Zhang T, Hu J, Tsang YF, Gao M. 2019. Phenolic Acids Derived from Rice Straw Generate Peroxides Which Reduce the Viability of Staphylococcus Aureus Cells in Biofilm. Industrial Crops and Products 140:111561. doi: 10.1016/j.indcrop.2019.111561.
Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. 2022. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 10(6):1–16. doi: 10.3390/microorganisms10061220.
Goodman BA. 2020. Utilization of Waste Straw and Husks from Rice Production: A Review. Journal of Bioresources and Bioproducts 5(3):143–62. doi: 10.1016/j.jobab.2020.07.001.
Hafeez FY, Yasmin S, Ariani D, Renseigne N, Zafar Y, Malik KA. 2006. Plant Growth-Promoting Bacteria as Biofertilizer. Agron. Sustain. Dev. 26:143–50. doi: DOI: 10.1051/agro:2006007.
Liwen H, Zhou W, Xing Y, Pian R, Chen X, Zhang Q. 2019. Improving the Quality of Rice Straw Silage with Moringa Oleifera Leaves and Propionic Acid: Fermentation, Nutrition, Aerobic Stability and Microbial Communities. Bioresource Technology 299:122579. doi: 10.1016/j.biortech.2019.122579.
Ismail AS, Rizal Y, Armenia A, Kasim A. 2021a. Determination of the Best Method for Processing Gambier Liquid By-Product [Uncaria Gambir (Hunter) Roxb] as Natural Antioxidant Sources. Journal of the Indonesian Tropical Animal Agriculture 46(2):166–72. doi: 10.14710/jitaa.46.2.166-172.
Ismail AS, Rizal Y, Armenia A, Kasim A. 2021b. Identification of Bioactive Compounds in Gambier (Uncaria Gambir) Liquid by-Product in West Sumatra , Indonesia. Biodiversitas 22(3):1474–80. doi: 10.13057/biodiv/d220351.
Jyolsna KS, Bharathi N, Riyaz AL, Paari K. 2021. Impact of Lysinibacillus Macroides, a Potential Plant Growth Promoting Rhizobacteria on Growth, Yield and Nutritional Value of Tomato Plant (Solanum Lycopersicum L. F1 Hybrid Sachriya). Plant Science Today 8(2):365–72. doi: https://doi.org/10.14719/pst.2021.8.2.1082.
Kozie? M, Ga??zka A. 2019. Characteristics of Selected Molecular Methods Used in Identification and Assessment of Genetic Diversity of Bacteria Belonging to the Genus Azotobacter. Polish Journal of Agronomy 38:37–45. doi: 10.26114/pja.iung.391.2019.38.05.
Lamont JR, Wilkins O, Bywater-Ekegärd M, Smith DL. 2017. From Yogurt to Yield: Potential Applications of Lactic Acid Bacteria in Plant Production. Soil Biology and Biochemistry 111:1–9. doi: 10.1016/j.soilbio.2017.03.015.
Li W, Yuan S, Li Q, Sang W, Cao J, Jiang W. 2018. Methyl P-Coumarate Inhibits Black Spot Rot on Jujube Fruit through Membrane Damage and Oxidative Stress against Alternaria Alternata. Postharvest Biology and Technology 145:230–38. doi: 10.1016/j.postharvbio.2018.07.016.
Menzel C, González-Martínez C, Vilaplana F, Diretto G, Chiralt A. 2020. Incorporation of Natural Antioxidants from Rice Straw into Renewable Starch Films. International Journal of Biological Macromolecules 146:976–86. doi: 10.1016/j.ijbiomac.2019.09.222.
Omar MS, Kordal? S, Korkmaz M. 2018. Evaluation Of The Effect Of Benzoic Acid On Some Plant Pathogenic Fungi. International Journal of Agricultural and Natural Sciences 1(1):3–5.
Prihartini I. 2007. Studi Optimasi Potensi Bakteri Lignokloritik Dalam Mendegradasi Lignin Dan Organochlorin Pada Peningkatan Nilai Nutrisi Jerami Padi Sebagai Pakan Ternak Ruminansia. Universitas Brawijaya Malang. [Optimization Study of the Potential of Lignochloritic Bacteria in Degrading Lignin and Organochlorins in Increasing the Nutritional Value of Rice Straw as Ruminant Animal Feed. Brawijaya University]
Prihartini I, Ari M, Fayiz M, Atoum M, Ismail AS, Hendraningsih L. 2021. The Effect of Supplementation Lignolitic Probiotic in Rice Straw for Digestibility and Efficiency of Microbial Protein Synthesis Using. Sarhad Journal of Agriculture XX(X):1–8. doi: https://dx.doi.org/10.17582/journal.sja/2021.37.s1.136.143.
Qiao L, Lewis R, Hooper A, Morphet J, Tan X, Yu K. 2013. Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract.https://www.waters.com/content/dam/waters/en/app-notes/2013/720004837/720004837-en.pdf.
Rajarathnam S, Wankhede DB, Bano Z. 1987. Degradation of Rice Straw by Pleurotus Flabellatus. J. Chem. Tech. Biotechnol. 37:203–14.
Ramakrishnan P, Kalakandan S, Pakkirisamy M. 2018. Studies on Positive and Negative Ionization Mode of Esi-Lc-Ms/ Ms for Screening of Phytochemicals on Cassia Auriculata (Aavaram Poo). Pharmacogn. J. 10(3):457–62. doi: 10.5530/pj.2018.3.75.
Renganathan P, Sivakumar T, Balabaskar P, Kannan R, Saravanan KR. 2020. Lignin Degradation Activity By Various Multispore Isolates of Pleurotus SPP . in Different Substrates. Plant Archives 20(1):1625–28.
Senaratna T, Merritt D, Dixon K, Bunn E, Touchell D, Sivasitthamparam K. 2003. Benzoic Acid May Act as the Functional Group in Salicylic Acid and Derivatives in the Induction of Multiple Stress Tolerance in Plants. Plant Growth Regulation 39:1377–81. doi: 10.1023/A.
Simanungkalit RDM, Suriadikarta DA, Saraswati R, Setyorini D, Hartatik W. 2006. Pupuk Organik Dan Pupuk Hayati. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. [Organic Fertilizer and Biofertilizer]. http://repository.pertanian.go.id/bitstream/handle/123456789/9394/Pupuk%20Organik%20dan%20Pupuk%20Hayati.pdf?sequence=1
Theradimani M, Thangeshwari S, Arulsamy M, Parthasarathy S. 2019. Composted Coirpith Using Edible Fungi (Pleurotus Spp.) for the Management of Rice Sheath Blight and Sheath Rot. Res. Jr. of Agril. Sci. 10(3):521–25.
Torres de C, Díaz-Maroto MC, Hermosín-Gutiérrez I, Pérez-Coello MS. 2010. Effect of Freeze-Drying and Oven-Drying on Volatiles and Phenolics Composition of Grape Skin. Anal. Chim. Acta. 660(1–2):177–82. doi: 10.1016/j.aca.2009.10.005.
Zeng X, Su W, Zheng Y, Liu H, Li P, Zhang W, Liang Y, Bai Y, Peng W, Yao H. 2018. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 23(895):1–15. doi: 10.3390/molecules23040895.