Carbon sink and greenhouse gas emission of dryland vegetation cover in tourism villages in Flores Island, East Nusa Tenggara, Indonesia

##plugins.themes.bootstrap3.article.main##

FATMA LESTARI
INDRA NI TUA
ADONIS MUZANNI
DANESTA FEBIANTO NUGROHO
ANDRIO A. WIBOWO
TRI WARTONO
BAIDURI WIDANARKO
ASEP SAEPULLAH
ROBIANA MODJO
MIFTACHUL FARIDA
DADAN ERWANDI
DESSY DWI ARYANI
ABDUL KADIR
ANINDHITA IRSALINA WIDIATMOKO
HENDRA
ZICO JUNI HERWANTO
MILA TEJAMAYA
RIZAL ALFIANSYAH HAMID
FATMAH
EZSA LARASHATI GUNAWAN
DINA LUSIANA SETYOWATI
M. FAIZIR HAFIDS
ROSSI YULIANI

Abstract

Abstract. Lestari F, Tua IN, Muzanni A, Nugroho DF, Wibowo AA, Wartono T, Widanarko B, Saepullah A, Modjo R, Farida M, Erwandi D, Aryani DD, Kadir A, Widiatmoko AI, Hendra, Herwanto ZJ, Tejamaya M, Hamid RA, Fatmah, Gunawan EL, Setyowati DL, Hafids MF, Yuliani R. 2023. Carbon sink and greenhouse gas emission of dryland vegetation cover in tourism villages in Flores Island, East Nusa Tenggara, Indonesia. Biodiversitas 24: 1998-2005. Due to its natural features and scenery, the dryland ecosystem has recently become a tourist destination. One of the growing dryland ecosystems for village tourism is Flores Island, East Nusa Tenggara, Indonesia. Those tourism villages have the potential to promote carbon sequestration through the preservation of natural resources and, at the same time, can release Green-House Gases (GHG). Despite growing research on carbon stock, there is little information on the carbon budget of a dryland tourism village, which includes the values of carbon stock sequestered from the atmosphere and greenhouse gas emissions. This research aimed to measure the carbon stock and GHG emissions in three villages containing paddy fields, savanna, and forest covers. The measured gases, including CO2, CH4, and N2O, were collected using the gas chamber method and analyzed using gas chromatography. The result shows that forest land covers have the highest carbon stock, with average values of 97.44 Mg ha-1 within the 57.34-117.5 Mg ha-1. A low average carbon stock of 17.39 Mg ha-1 was observed in paddy fields. The GHG was in the order of CO2 > CH4 > N2O. The paddy field has higher GHG than other land covers, with average CO2, CH4, and N2O values of 292.45 ppm, 1.35 ppm, and 1.09 ppm. While CO2, CH4, and N2O values for the forest were 281.05 ppm, 1.30 ppm, 1.05 ppm, 272.83 ppm, 1.26 ppm, and 1.02 ppm for savanna covers.

##plugins.themes.bootstrap3.article.details##

References
Abdullah UH, Sufardi, Syafruddin, Arabia T. 2022. Soil organic carbon of grassland and bush forest on dryland in Aceh Besar District, Indonesia. Biodiversitas 23 (5): 2594-2600. DOI: 10.13057/biodiv/d230541.
Aguilera E, Vila-Traver J, Deemer BR, Infante-Amate J, Guzmán GI, de Molina MG. 2019. Methane emissions from artificial waterbodies dominate the carbon footprint of irrigation: A study of transitions in the food-energy-water-climate nexus (Spain, 1900-2014). Environ Sci Technol 53 (9): 5091-5101. DOI: 10.1021/acs.est.9b00177.
Akliyah LS, Hindersah H, Fikri MH. 2022. Analysis of the paddy fields to support community and tourism activities in Ciemas District, Indonesia [version 1; peer review: 1 approved with reservations]. F1000 Res 11: 523. DOI: 10.12688/f1000research.111281.1.
Alatorre LC, Sánchez-Carrillo S, Miramontes-Beltrán S, Medina RJ, Torres-Olave ME, Bravo LC, Wiebe LC, Granados A, Adams DK, Sánchez E, Uc M. 2016. Temporal changes of NDVI for qualitative environmental assessment of mangroves: Shrimp farming impact on the health decline of the arid mangroves in the Gulf of California (1990-2010). J Arid Environ 125: 98-109. DOI: 10.1016/j.jaridenv.2015.10.010.
Arunrat N, Sereenonchai S, Pumijumnong N. 2018. On-farm evaluation of the potential use of greenhouse gas mitigation techniques for rice cultivation: A case study in Thailand. Climate 6 (2): 36. DOI: 10.3390/cli6020036.
Bardgett RD, Bullock JM, Lavorel S et al. 2021. Combatting global grassland degradation. Nat Rev Earth Environ 2: 720-735. DOI: 10.1038/s43017-021-00207-2.
Bastin JF, Berrahmouni N, Grainger A et al. 2017. The extent of forest in dryland biomes. Science 356: 635-638. DOI: 10.1126/science.aam6527.
Buditama G, Saiya HG, Putri NP. 2021. Effects of climate change on dryland agriculture vegetation index in Nangapanda, East Nusa Tenggara. IOP Conf Ser: Earth Environ Sci 716: 012013. DOI: 10.1088/1755-1315/716/1/012013.
Chevallier T, Hamdi S, Tahar G, Brahim N, Cardinael R, Zohra B, Cournac L, Chenu C, Bernoux M. 2016. The Mediterranean Region Under Climate Change: A Scientific Update. IRD Éditions, Marseille.
Del Campo AD, González-Sanchis M, Ilstedt U, Bargués-Tobella A, Ferraz S. 2019. Dryland forests and agrosilvopastoral systems: Water at the core. Unasylva 70 (251): 27-35.
Fiqa AP, Fauziah, Lestari DA, Budiharta S. 2019. The importance of in-situ conservation area in mining concession in preserving diversity, threatened and potential floras in East Kalimantan, Indonesia. Biodiversitas 20 (1): 198-210. DOI: 10.13057/biodiv/d200123.
Fu C, Chen Z, Wang G, Yu X, Yu G. 2021. A comprehensive framework for evaluating the impact of land use change and management on soil organic carbon stocks in global drylands. Curr Opin Environ Sustain 48: 103-109. DOI: 10.1016/j.cosust.2020.12.005.
Gebregergis Z. 2016. A Review on: Management of carbon in dryland agriculture. J Environ Earth Sci 6 (2): 70-75.
Hanan NP, Milne E, Aynekulu E, Yu Q, Anchang J. 2021. A role for drylands in a carbon neutral world? Front Environ Sci 9: 786087. DOI: 10.3389/FENVS.2021.786087.
Heinemeyer A, McNamara NP. 2011. Comparing the closed static versus the closed dynamic chamber flux methodology: Implications for soil respiration studies. Plant Soil 346: 145-151. DOI: 10.1007/s11104-011-0804-0.
Ibharim NA, Mustapha MA, Lihan T, Mazlan AG. 2015. Mapping mangrove changes in the Matang Mangrove Forest using multi-temporal satellite imageries. Ocean Coast Manag 114: 64-76. DOI: 10.1016/j.ocecoaman.2015.06.005.
Islam SMM, Gaihre YK, Islam MR, Akter M, Al Mahmud A, Singh U, Sander BO. 2020. Effects of water management on greenhouse gas emissions from farmers' rice fields in Bangladesh. Sci Total Environ 734: 139382. DOI: 10.1016/j.scitotenv.2020.139382.
Jantke K, Hartmann MJ, Rasche L, Blanz B, Schneider UA. 2020. Agricultural greenhouse gas emissions: Knowledge and positions of German farmers. Land 9 (5): 130. DOI: 10.3390/land9050130.
Kangkuso A, Sharma S, Jamili, Septiana A, Sahidin I, Rianse U, Rahim S, Nadaoka K. 2018. Trends in allometric models and aboveground biomass of Rhizophoraceae mangrove family at the coral triangle ecoregion, Southeast Sulawesi, Indonesia. J Sustain For 37 (7): 691-711. DOI: 10.1080/10549811.2018.1453843.
Kawamuna A, Suprayogi A, Wijaya AP. 2017. Analisis kesehatan hutan mangrove berdasarkan metode klasifikasi NDVI pada Citra Sentinel-2 (Studi kasus: Teluk Pangpang Kabupaten Banyuwangi). Jurnal Geodesi UNDIP 6 (1): 277-284. [Indonesian]
Kementerian Koperasi dan UKM Republik Indonesia. 2017. Buku Panduan Pengembangan Desa Wisata Hijau. Asisten Deputi Urusan Ketenagalistrikan dan Aneka Usaha Kementerian Koperasi dan UKM Republik Indonesia, Indonesia. [Indonesian]
Khaple AK, Devagiri GM, Veerabhadraswamy N, Babu S, Mishra SB. 2021. Chapter 6-Vegetation biomass and carbon stock assessment using geospatial approach. Forest Resources Resilience and Con?icts. Elsevier. DOI: 10.1016/B978-0-12-822931-6.00006-X.
Koch M, Missimer TM. 2016. Water resources assessment and management in drylands. Water 8 (6): 239. DOI: 10.3390/w8060239.
Kurniawan H, Yuniati D. 2015. Carbon sink potency in three types of savanna in Nusa Tenggara Timur. Jurnal Penelitian Kehutanan Wallacea 4 (1): 51-62. DOI: 10.18330/jwallacea.2015.vol4iss1pp51-62. [Indonesian]
Kusmana C, Hidayat T, Tiryana T, Rusdiana O, Istomo. 2018. Allometric models for above-and below-ground biomass of Sonneratia spp. Glob Ecol Conserv 15: e00417. DOI: 10.1016/j.gecco.2018.e00417.
Leley NC, Langat DK, Kisiwa AK, Maina GM, Muga MO. 2022. Total carbon stock and potential carbon sequestration economic value of Mukogodo Forest-landscape ecosystem in Drylands of Northern Kenya. Open J For 12 (1): 19-40. DOI: 10.4236/ojf.2022.121002.
Lestari ND. 2022. The sustainability of paddy field tourism: Problems and control instruments. Marcapada: Jurnal Kebijakan Pertanahan 1 (2): 139-154. DOI: 10.31292/mj.v1i2.11.
Li J, Xue Z, Li Y, Bo G, Shen F, Gao X, Zhang J, Tan T. 2023. Real-time measurement of atmospheric CO2, CH4 and N2O above rice fields based on Laser Heterodyne Radiometers (LHR). Agronomy 13 (2): 373. DOI: 10.3390/agronomy13020373.
Lukina N, Kuznetsova A, Tikhonova E, Smirnov V, Danilova M, Gornov A, Bakhmet O, Kryshen A, Tebenkova D, Shashkov M, Knyazeva S. 2020. Linking forest vegetation and soil carbon stock in Northwestern Russia. Forests 11 (9): 979. DOI:10.3390/f11090979.
Maulana SI, Wibisono Y, Utomo S. 2016. Development of local allometric equation to estimate total aboveground biomass in Papua tropical forest. Indones J For Res 3 (2): 107-118. DOI: 10.20886/ijfr.2016.3.2.107-118.
Mboyerwa PA, Kibret K, Mtakwa P, Aschalew A. 2022. Greenhouse gas emissions in irrigated paddy rice as influenced by crop management practices and nitrogen fertilization rates in eastern Tanzania. Front Sustain Food Syst 6: 868479. DOI: 10.3389/fsufs.2022.868479.
Mulyani A, Sarwani M. 2013. Karakteristik dan potensi lahan sub optimal untuk pengembangan pertanian di Indonesia. Jurnal Sumberdaya Lahan 7: 47-55. DOI: 10.2017/jsdl.v7n1.2013.%p. [Indonesian]
Oertel C, Herklotz K, Matschullat J, Zimmermann F. 2012. Nitric oxide emissions from soils: A case study with temperate soils from Saxony, Germany. Environ Earth Sci 66: 2343-2351. DOI: 10.1007/s12665-011-1456-3.
Philiani I, Saputra L, Harvianto L, Muzaki AA. 2016. Pemetaan vegetasi hutan mangrove menggunakan metode Normalized Difference Vegetation Index (NDVI) di Desa Arakan, Minahasa Selatan, Sulawesi Utara. Surya Octagon Interdisc J Sci Technol 1 (2): 211-222. [Indonesian]
Pinto LOR, de Souza CR, Terra MdeCNS, de Mello JM, Calegario N, Júnior FWA. 2021. Optimal plot size for carbon-diversity sampling in tropical vegetation. For Ecol Manag 482: 118778. DOI: 10.1016/j.foreco.2020.118778.
Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509: 600-603. DOI: 10.1038/nature13376.
Pr?v?lie R. 2016. Drylands extent and environmental issues. A global approach. Earth Sci Rev 161: 259-278. DOI: 10.1016/j.earscirev.2016.08.003.
Rafa N, Nuzhat S, Uddin SMN, Gupta M, Rakshit R. 2021. Ecotourism as a forest conservation tool: An NDVI analysis of the Sitakunda Botanical Garden and Ecopark in Chattogram, Bangladesh. Sustainability 13 (21): 12190. DOI: 10.3390/su132112190.
Rhyma PP, Norizah K, Hamdan O, Faridah-Hanum I, Zulfa AW. 2020. Integration of normalised different vegetation index and soil-adjusted vegetation index for mangrove vegetation delineation. Remote Sens Appl: Soc Environ 17: 100280. DOI: 10.1016/j.rsase.2019.100280.
Shang Q, Yang X, Gao C, Wu P, Liu J, Xu Y, Shen Q, Zou J, Guo S. 2011. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob Change Biol 17 (6): 2196-2210. DOI: 10.1111/j.1365-2486.2010.02374.x.
Shi Y, Lou Y, Zhang Z, Ma L, Ojara MA. 2020. Estimation of methane emissions based on crop yield and remote sensing data in a paddy field. Greenh Gases: Sci Technol 10 (1): 196-207. DOI: 10.1002/ghg.1946.
Šimek M, Hynšt J, Šimek P. 2014. Emissions of CH4, CO2, and N2O from soil at a cattle overwintering area as affected by available C and N. Appl Soil Ecol 75 (5): 52-62. DOI: 10.1016/j.apsoil.2013.10.010.
Singgalen YA, Manongga D. 2022a. Mangrove-based ecotourism sustainability analysis using NDVI and AHP Approach. Indones J Comput Cybern Syst 16 (2): 125-136. DOI: 10.22146/ijccs.68986.
Singgalen YA, Manongga D. 2022b. Monitoring of mangrove ecotourism area using NDVI, NDWI, and CMRI in Dodola Island, Morotai Island Regency, Indonesia. J Ilmu Teknol Kelaut Tropis 14 (1): 95-108. DOI: 10.29244/jitkt.v14i1.37605.
Sudibya B. 2018. Wisata desa dan desa wisata. Jurnal Bali Membangun Bali: Jurnal Bappeda Litbang 1 (1): 21-25. DOI: 10.51172/jbmb.v1i1.8.
Sukojo BM, Arindi YN. 2019. Analisa perubahan kerapatan mangrove berdasarkan nilai Normalized Difference Vegetation Index menggunakan Citra Landsat 8 (Studi kasus: Pesisir Utara Surabaya). Geoid 14 (2): 1-5. DOI: 10.12962/j24423998.v14i2.3874. [Indonesian]
Supari, Tangang F, Salimun E, Aldrian E, Sopaheluwakan A, Juneng L. 2018. ENSO modulation of seasonal rainfall and extremes in Indonesia. Clim Dyn 51: 2559-2580. DOI: 10.1007/s00382-017-4028-8.
Sutomo, Kurniawan H, Pujiono E, Yuniati D, Saputra MH, Januar HI, Kuswandi R, Hadiyan Y, Hadi EEW, Hidayah I, Humaida N, Sukmawati JG. 2023. Karbon Hijau Savana Nusa Tenggara Timur. Media Sains Indonesia. Bandung, Indonesia. [Indonesian]
Sutomo, van Etten E. 2021. Savanna plant communities in the wetter parts of the Indonesian archipelago. Folia Geobot 56: 193-204. DOI: 10.1007/s12224-021-09401-y.
Suwanto A, Takarina ND, Koestoer RH, Frimawaty E. 2021. Diversity, biomass, covers, and NDVI of restored mangrove forests in Karawang and Subang Coasts, West Java, Indonesia. Biodiversitas 22 (9): 4115-4122. DOI: 10.13057/biodiv/d220960.
Tirtalistyani R, Murtiningrum, Kanwar RS. 2022. Indonesia rice irrigation system: Time for innovation. Sustainability 14 (19): 12477. DOI: 10.3390/su141912477.
Ukkola AM, De Kauwe MG, Roderick ML, Burrell A, Lehmann P, Pitman AJ. 2021. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob Change Biol 27 (18): 4367-4380. DOI: 10.1111/gcb.15729.
Vatani L, Hosseini SM, Sarjaz MR, Alavi SJ. 2019. The effect of tree species on greenhouse gas emissions from forest plantation soils?. J Agric Meteorol 7 (1): 36-46.
Victor AD, Valery NN, Louis Z. 2019. Carbon storage and emission factor of savanna ecosystems in Soudano-Sahelian Zone of Cameroon. J Bot Res 2 (1): 60-70. DOI: 10.36959/771/562.
Wang H, Liu Y, Wang Y, Yao Y, Wang C. 2022. Land cover change in global drylands: A review. Sci Total Environ 863: 160943. DOI: 10.1016/j.scitotenv.2022.160943.
Wang W, Dalal RC, Reeves SH, Butterbach-Bahl K, Kiese R. 2011. Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes. Glob Change Biol 17 (10): 3089-3101. DOI: 10.1111/j.1365-2486.2011.02458.x.
Wang Z, Ma Y, Chen P, Yang Y, Fu H, Yang F, Raza MA, Guo C, Shu C, Sun Y, Yang Z, Chen Z, Ma J. 2022. Estimation of rice aboveground biomass by combining canopy spectral reflectance and unmanned aerial vehicle-based red green blue imagery data. Front Plant Sci 13: 903643. DOI: 10.3389/fpls.2022.903643.
Yao Z, Zheng X, Dong H, Wang R, Mei B, Zhu J. 2012. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric Ecosyst Environ 152: 1-9. DOI: 10.1016/j.agee.2012.02.004.
Yu D, Ramsey RD, Zhao XM, Fu YQ, Sun CK. 2018. Feasible conversion degree of dryland to paddy field in Jinxian County, Jiangxi province, China. Geocarto Intl 34 (9): 1042-1053. DOI: 10.1080/10106049.2018.1452988.
Zaman M, Kleineidam K, Bakken L et al. 2021. Methodology for measuring greenhouse gas emissions from agricultural soils using non-isotopic techniques. In: Zaman M, Heng L, Müller C (eds). Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques. Springer, Cham, Swiss. DOI: 10.1007/978-3-030-55396-8_2.
Zhu S, Li C, Shao H, Ju W, Lv N. 2019. The response of carbon stocks of drylands in central asia to changes of CO2 and climate during past 35 years. Sci Total Environ 687: 330-340. DOI: 10.1016/j.scitotenv.2019.06.089.

Most read articles by the same author(s)