Forest covers, land fire hotspots, and atmospheric pollutions (CO, SO2) in the lower Batanghari River Basin landscape during dry season (June-August 2021)




Abstract. Wibowo AA, Basukriadi A, Nurdin E. 2021. Forest covers, land fire hotspots, and atmospheric pollutions (CO, SO2) in the lower Batanghari River Basin landscape during dry season (June-August 2021). Biodiversitas 22: 5678-5687. Land fire is a major threat to the intact forest in Indonesia, including the rainforests of Sumatra. Land fires are caused by several factors, ranging from deforestation, slash and burn to farm, and also weather where land fires occur during dry seasons. Land fires that occur in forests can release significant amounts of atmospheric pollution in the form of CO and SO2 emissions. Since there is a paucity of information about land fire hotspot distribution and atmospheric pollution in Sumatra’s forest, this study aims to assess the distribution and impacts of land fires within the lower Batanghari forest landscape on atmospheric pollution during the dry season from June to August 2021. The study was conducted in 15 sampling locations covering three districts in the lower Batanghari landscape. The method uses a coupled ground-based and remote sensing measurement. For ground-based measurement, the CO and SO2 emissions were determined based on in-situ observation of burned biomass in the field and calculation using Seiler and Crutzen equation. While the land fire hotspots were detected using combinations of VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS (Moderate-resolution Imaging Spectroradiometer) remote sensing sensors. The result shows that 65.85% of the land fires that happened in the lower Batanghari landscape occurred within forests. In West Tanjung Jabung District, 70.37% of land fires were observed within forests, in East Tanjung Jabung was 60% and 55.55% for Muaro Jambi District. The weekly land fires, CO, and SO2 emissions were high in June as the onset of dry season. In West Tanjung Jabung, this district has the highest weekly land fires, CO, and SO2 emissions. The ranges of CO and SO2 emissions when land fires occur were 200-350 ppbv and 1.5-2.75 ug/m3. The Principal Component Analysis confirms that the frequency of land fires was positively correlated with CO rather than SO2 emissions. This concludes the magnitude of land fires in forests that have the potential to release significant atmospheric pollutants.


Adrianto HA, Spracklen DV, Arnold SR, Sitanggang IS, Syaufina L. 2020. Forest and land fires are mainly associated with deforestation in Riau Province, Indonesia. Remote Sens 12 (3). DOI: 10.3390/rs12010003.
Abatzoglou JT, Williams AP. 2016. Climate change has added to western US forest fire. Proceedings of the National Academy of Sciences 113 (42): 11770-11775. DOI: 10.1073/pnas.1607171113.
Ahmad F, Goparaju L. 2019. Forest fire trend and influence of climate variability in India: a geospatial analysis at national and local scale. Ekológia (Bratislava) 38 (1): 49–68. DOI: 10.2478/eko-2019-0005.
Budiningsih K. 2017. The implementation of land and forest fire management policy in South Sumatera Province. Jurnal Analisis Kebijakan Kehutanan 14 (2): 165-186.
Butterbach-Bahl K, Baggs L, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?. Philosophical transactions of the Royal Society of London. Series B Biological Sciences. 368. 20130122. DOI: 10.1098/rstb.2013.0122.
Carlson K, Heilmayr R, Gibbs H, Noojipady P, Burns D, Morton D, Walker N, Paoli G, Kremen C. 2018. Effect of oil palm certification, forests, and fire in Indonesia. Proceedings of the National Academy of Sciences 115 (1): 121-126. DOI: 10.1073/pnas.1704728114
Coogan S, Robinne F, Jain P, Flannigan M. 2019. Scientists’ warning on wildfire — a Canadian perspective. Canadian Journal of Forest Research. 49. DOI: 10.1139/cjfr-2019-0094.
Csiszar I, Schroeder W, Giglio L, Ellicott E, Vadrevu K, Justice C, Wind B. 2014. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: product status and first evaluation results. Journal of Geophysical Research: Atmospheres. DOI: 10.1002/2013JD020453.
Gaveau DLA, Sheil D, Husnayaen, Salim MA, Arjasakusuma S, Ancrenaz M, Pacheco P, Meijaard E. 2016. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Nature Scientific Reports 6 (32017). DOI: 10.1038/srep32017.
Graham A, Pope R, McQuaid J, Pringle K. 2020. Impact of the June 2018 Saddleworth Moor wildfires on air quality in northern England. Environmental Research Communications 2. DOI: 10.1088/2515-7620/ab7b92.
Guo L, Ma Y, Tigabu M, Guo X, Zheng W, Guo F. 2020. Emission of atmospheric pollutants during forest fire in boreal region of China. Environmental Pollution. 264. 114709. DOI: 10.1016/j.envpol.2020.114709
Gustiandi B, Monica D, Indradjad A .2020. Automatic NOAA JPSS satellite series data processing system to produce active fires information. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital 17 (1): 43-55.
Gustina D. 2021. Impact of forest fires in Sumatra and Kalimantan to atmospheric pollution during period of 2010-2015. JKPK (Jurnal Kimia Dan Pendidikan Kimia). 6 (1): 108-121. DOI:10.20961/JKPK.V6I1.35027.
Huijnen V, Wooster M, Kaiser J, Gaveau D, Flemming J. 2016. Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997. Scientific Reports. 6. 26886. DOI: 10.1038/srep26886.
Indradjad A, Purwanto J, Sunarmodo W. 2019. Accuracy level analysis of hotspot from S-NPP VIIRS and Terra/Aqua MODIS compare to fire event. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital 16 (1): 53-60.
Jones M, Santín C, Werf G, Doerr SH. 2019. Global fire emissions buffered by the production of pyrogenic carbon. Nature Geoscience. 12. DOI: 10.1038/s41561-019-0403-x.
Kawamuna Al, Suprayogi A, Wijaya AP. 2017. Analisis kesehatan hutan mangrove berdasarkan metode klasifikasi NDVI pada citra Sentinel-2 (Studi Kasus : Teluk Pangpang Kabupaten Banyuwangi. Jurnal Geodesi Undip 6 (1): 277-284.
Kumari B, Pandey A. 2019. MODIS based forest fire hotspot analysis and its relationship with climatic variables. Spatial Information Research 28. DOI: 10.1007/s41324-019-00275-z.
Krupnova TG, Rakova OV, Plaksina AL, Gavrilkina SV, Baranov EO, Abramyan AD. 2020. Effect of urban greening and land use on air pollution in Chelyabinsk, Russia. Biodiversitas 21: 2716-2720. DOI: 10.13057/biodiv/d210646.
Lin Y, Jenkins S, Chow J, Biass S, Woo G, Lallemant D. 2020. Modeling downward counterfactual events: unrealized disasters and why they Matter. Frontiers in Earth Science 8 (1). DOI: 10.3389/feart.2020.575048.
Liu X, Huey GL, Yokelson RJ, Selimovic V, Simpson IJ. 2017. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. J Geophys Res Atmos 122: 6108–6129. DOI: 10.1002/2016JD026315.
Lu J, Zhou T, Li B, Wu C. 2018. Scale analysis and correlation study of wildfire and the meteorological factors that influence it. Mathematical Problems in Engineering. DOI: 10.1155/2018/5739805.
Mallia D, Lin J, Urbanski S, Ehleringer J, Nehrkorn T. 2014. Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah. Journal of Geophysical Research: Atmospheres. 120. DOI: 10.1002/2014JD022472.
Mishra, S, Page, SE, Cobb, AR. 2021. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J Appl Ecol 58: 1370– 1387. DOI: 10.1111/1365-2664.13905.
Mora, AM, Saharjo B, Prasetyo L. 2019. Forest fire occurrence in Berbak Sembilang National Park Jambi Province on 2000-2018 and its relationship with fuel load. IOP Conference Series: Earth and Environmental Science. 394. 012043. DOI: 10.1088/1755-1315/394/1/012043.
Philiani I, Saputra L, Harvianto L, Muzaki AA. 2016, Pemetaan vegetasi hutan mangrove menggunakan metode Normalized Difference Vegetation Index (NDVI) Di Desa Arakan, Minahasa Selatan, Sulawesi Utara. SOIJST 1 (2):211-222.
Prasetyo L, Dharmawan A, Tonny F, Ramdhoni S. 2016. Historical forest fire occurrence analysis in Jambi Province during the period of 2000 – 2015: Its Distribution & Land Cover Trajectories. Procedia Environmental Sciences. 33. 450-459. DOI: 10.1016/j.proenv.2016.03.096.
Purnomo E, Zahra A, Malawani A, Anand P. 2021. The Kalimantan forest fires: an actor analysis based on supreme court documents in Indonesia. Sustainability 13 (2342). DOI: 10.3390/su13042342.
Ribeiro-Kumara C, Köster K, Köster E, Aaltonen H. 2020. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environmental Research. 184. DOI: 10.1016/j.envres.2020.109328.
Sannigrahia S, Zhang Q, Pilla F, Basua B, Basu A. 2020. Effects of West Coast forest fire emissions on atmospheric environment: A coupled
satellite and ground-based assessment. Arxiv. 2010.12977
Schoneveld GC, Ekowati D, Andrianto A, Haa S. 2019. Modeling peat-and forestland conversion by oil palm smallholders in Indonesian Borneo. Environ Res Lett 14. DOI: 10.1088/1748-9326/aaf044
Seiler W, Crutzen PJ. 1980. Estimates of gross and net fluxes of carbon between the biosphere and atmosphere. Clim Change 2:207 – 247.
Susanti T, Musyaddad K, Oryza D, Utami W, Arsyad M. 2020. Tumbuhan khas di kawasan Candi Muaro Jambi dalam kajian etnobotani dan potensi ekonomi. Al-Kauniyah: Jurnal Biologi. 13: 192-208. DOI: 10.15408/kauniyah.v13i1.13348.
Tamin R Puri S, Hardiyanti R. 2019. Exploration of tree species in Muaro Jambi Temple complex. Media Konservasi. 24: 245-251. DOI: 10.29244/medkon.24.3.245-251.
Tanjabbarkab. 2016. Rencana Pembangunan Jangka Menengah 2011-2016.
Tanjabtimkab 2019. Profil Daerah Kabupaten Tanjung Jabung Timur.
Thoha AS, Saharjo BH, Boer R, Ardiansyah M. 2019. Characteristics and causes of forest and land fires in Kapuas District, Central Kalimantan Province, Indonesia. Biodiversitas 20:110-117. DOI: I:10.13057/biodiv/d200113.
Thoha AS, Triani H. 2021. A spatial model of forest and land fire vulnerability level in the Dairi District, North Sumatra, Indonesia. Biodiversitas 22: 3319-3326. DOI: 10.13057/biodiv/d220827.
Trozzi, C, Vaccaro R, Piscitello E. 2002. Emissions estimate from forest fires: methodology, software and European case studies. Conference: Emission Inventories - Partnering for the Future - April 15 - 18, 2002 in Atlanta, Georgia, USA.
Utami N, Sapei A, Apip. 2017. Land use change assessment and its demand projection in Batanghari River Basin, Sumatera, Indonesia. Limnotek 24 (2): 52-60. DOI: 10.14203/limnotek.v24i2.156.
Vadrevu KP, Lasko K, Giglio L. 2019. Trends in vegetation fires in South and Southeast Asian Countries. Sci Rep 9 (7422). DOI: 10.1038/s41598-019-43940-x.
Vasquez K. 2021. Measuring atmospheric trace gases using mass spectrometry. Nat Rev Earth Environ 2 (305). DOI: 10.1038/s43017-021-00163-x
Wiggins E, Andrews A, Sweeney C, Miller J, Miller C, Veraverbeke S. 2021. Boreal forest fire CO and CH4 emission factors derived from tower observations in Alaska during the extreme fire season of 2015. Atmospheric Chemistry and Physics. 21: 8557-8574. DOI: 10.5194/acp-21-8557-2021.