Antimicrobial activities of endophytic bacteria isolated from Ageratum conyzoides Linn.

##plugins.themes.bootstrap3.article.main##

NARUMON BOONMAN
JARUWAN CHUTRTONG
CHANATE WANNA
SIRIPHAN BOONSILP
SUPATRA CHUNCHOB

Abstract

Abstract. Boonman N, Chutrtong J, Wanna C, Boonsilp S, Chunchob S. 2023. Antimicrobial activities of endophytic bacteria isolated from Ageratum conyzoides Linn. Biodiversitas 24: 1971-1979. Endophytic bacteria were isolated from various parts of Ageratum conyzoides Linn. Total 35 isolates were obtained which were consisting of eight isolates from the roots (AconR1-AconR8), nine isolates from the stems (AconS1-AconS9), seven isolates from the leaves (AconL1-AconL7) and 11 isolates from the flowers (AconF1-AconF11). These endophytic bacteria were examined for their antimicrobial activities against human pathogenic bacteria and fungi. The AconR2 and AconR4 inhibited the growth of Shigella flexneri and Salmonella enterica ser. typhi, whereas Escherichia coli was only inhibited by AconR2. For the antifungal activities assay, all isolated endophytic bacteria revealed no effect on Candida albicans, while six endophytic isolates exhibited more than 80% mycelial growth inhibition against Microsporum canis. These highly effective isolates were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The Bruker scores revealed that AconR2 and AconR4 were identified as Pseudomonas aeruginosa, AconS1 and AconS6 were classified as Enterobacter asburiae, Acon L5 and Acon F9 were identified as Bacillus cereus. The results indicated that these endophytic bacteria isolated from A. conyzoides effectively inhibited the growth of human pathogenic filamentous fungi and showed promise for further development as novel antifungal agents.

##plugins.themes.bootstrap3.article.details##

References
Afzal I, Shinwari ZK, Sikandar S, Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res. 221: 36-49. DOI: 10.1016/j.micres.2019.02.001
Alvin A, Miller KI, Neilan BA. 2014. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res. 169: 483-495. DOI: 10.1016/j.micres.2013.12.009
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 6(2): 71-79. DOI: 10.1016/j.jpha.2015.11.005
Bergey DH. 1994. Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins, Baltimore.
Bibi F, Ullah I, Akhtar S, Yasir M, Kensarah EA, Al-Ghamdi AAK, Azhar EI. 2017. Diversity and bioprospecting potential of rhizo and endophytic bacteria from two mangrove plants in Saudi Arabia. Afr J Microbiol Res. 11(19): 729-739.DOI: 10.5897/AJMR2017.8552
Breijyeh Z, Jubeh B, Karaman R. 2020. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 25(6): 1340. DOI: 10.3390/molecules25061340
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. 2022. Marine natural products. Nat Prod Rep. 39: 1122-1171. DOI: 10.1039/D1NP00076D
Chahal R, Nanda A, Akkol EK, Sobarzo-Sánchez E, Arya A, Kaushik D, Dutt R, Bhardwaj R, Rahman MH, Mittal V. 2021. Ageratum conyzoides L. and its secondary metabolites in the management of different fungal pathogens. Molecules. 26: 2933. DOI: 10.3390/molecules26102933
Chaouachi M, Marzouk T, Jallouli S, Elkahoui S, Gentzbittel L, Be C, Djébali N. 2021. Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biol Technol. 172: 111389. DOI: 10.1016/j.postharvbio.2020.111389
Chen N, Jin M, Qu HM, Chen ZQ, Chen ZL, Qiu ZG, Wang XW, Li JW. 2012. Isolation and characterization of Bacillus sp. producing broad-spectrum antibiotics against human and plant pathogenic fungi. J Microbiol Biotechnol. 22(2): 256-263. DOI: 10.4014/jmb.1107.07021
Fitriani A, Ihsan F, Hamdiyati Y. 2015. Antibacterial activity of Shewanella and Pseudomonas as endophytic bacteria from the root of Ageratum conyzoides L. Asian J Appl Sci. 3(3): 415-420.
Galgóczy LN, Guba M, Sajben-Nagy EI, Vörös M, Takó M, Vágvölgyi C. 2014. Antidermatophytic effect of Bacillus mojavensis SZMc 22228 and its secreted chymotrypsin-like protease. Acta Biol Szeged. 58(2):157-162.
Gouda S, Das G, Sen SK, Shin HS, Patra JK. 2016. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol. 7:1538. DOI: 10.3389/fmicb.2016.01538
Hogan DA, Kolter R. 2002. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 296(5576):2229-2232. DOI: 10.1126/science.1070784
Li H, Wang X, Han M, Zhao Z, Wang M, Tang Q, Liu C, Kemp B, Gu Y, Shuang J, Xue Y. 2012. Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afr J Biotechnol. 11(1):231-242. DOI: 10.5897/AJB11.2839
Matsubara VH, Wang Y, Bandara HMHN, Mayer MPA, Samaranayake LP. 2016. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 100(14):6415-6426. DOI: 10.1007/s00253-016-7527-3
Miljakovi? D, Marinkovi? J, Baleševi?-Tubi? S. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 8(7): 1037. DOI: 10.3390/microorganisms8071037
Naoufal D, Amine H, Ilham B, Khadija O. 2018. Isolation and biochemical characterisation of endophytic Bacillus spp. from Urtica dioica and study of their antagonistic effect against phytopathogens. Annu Res Rev Biol. 28(4): 1-7. DOI: 10.9734/ARRB/2018/43642
Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ. 2019. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 10:1404. DOI: 10.3389/fmicb.2019.01404
Pikulthong V, Bhirompan S, Dechkla M, Mokkapan K, Boonman N, Wanna C, Machana K, Phakpaknam S. 2022. Local herbs for pain relief in the area of Tumbon Khao Hin Son, Chachoengsao, Thailand. Biodiversitas. 23(10): 5012-5019. DOI: 10.13057/biodiv/d231007
Pomastowski P, Z?och M, Rodzik A, Ligor M, Kostrzewa M, Buszewski B. 2019. Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique. PLoS ONE. 14(5): e0217078. DOI: 10.1371/journal.pone.0217078
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. 2021. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem Rev.121(6): 3495-3560. DOI: 10.1021/acs.chemrev.0c00922
Rajaram SK, Ahmad P, Keerthana SSS, Cressida PJ, Moorthy IG, Suresh RS. 2020. Extraction and purification of an antimicrobial bioactive element from lichen associated Streptomyces olivaceus LEP7 against wound inhabiting microbial pathogens. J King Saud Univ Sci. 32(3): 2009-2015. DOI: 10.1016/j.jksus.2020.01.039
Renna M, Gonnella M. 2020. Ethnobotany, nutritional traits, and healthy properties of some halophytes used as greens in the Mediterranean basin. In: Grigore MN. (ed.) Handbook of halophytes: From molecules to ecosystems towards biosaline agriculture. Springer, Cham. pp. 1-19. DOI:10.1007/978-3-030-17854-3_100-1
Santos RF, Nunes BM, Sá RD, Soares LA, Randau KP. 2016. Morpho-anatomical study of Ageratum conyzoides. Rev Bras Farmacogn. 26: 679-687. DOI: 10.1016/j.bjp.2016.07.002
Shirasangi S, Hegde YR. 2018. Evaluation of bacterial endophytes against major fungal pathogens of groundnut under in vitro condition. J pharmacogn phytochem. 7(6): 1239-1243.
Siddiqui AA, Iram F, Siddiqui S, Sahu K. 2014. Role of natural products in drug discovery process. Int J Drug Dev Res. 6(2): 172-204.
Sorokina M, Steinbeck C. 2020. Review on natural products databases: where to find data in 2020. J Cheminform. 12(1): 1-51. DOI: 10.1186/s13321-020-00424-9
Strejcek M, Smrhova T, Junkova P, Uhlik O. 2018. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front Microbiol. 9:1294. DOI: 10.3389/fmicb.2018.01294
Strohl, WR. 2000. The role of natural products in a modern drug discovery program. Drug Discov. 5(2): 39-41. DOI: 10.1016/s1359-6446(99)01443-9
Sulistiyani S, Ardyati T, Winarsih S. 2017. Antimicrobial and antioxidant activity of endophyte bacteria associated with Curcuma longa rhizome. J Exp Life Sci. 6(1): 45-51. DOI: 10.21776/ub.jels.2016.006.01.11
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL. 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol. 304: 122997. DOI: 10.1016/j.biortech.2020.122997
Tsuchida S, Umemura H, Nakayama T. 2020. Current status of matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) in clinical diagnostic microbiology. Molecules. 25(20): 4775. DOI: 10.3390/molecules25204775
Van Wyk AS, Prinsloo G. 2018. Medicinal plant harvesting, sustainability and cultivation in South Africa. Biol Conserv 227: 335-342. DOI: 10.1016/j.biocon.2018.09.018
Wanna C. 2019. Free radical scavenging capacity and total phenolic contents in peel and fleshy crude extracts of selected vegetables. Pharmacogn J. 11(6): 1351-1358. DOI: 10.5530/pj.2019.11.209
Yadav N, Ganie SA, Singh B, Chhillar AK, Yadav SS. 2019. Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phytother Res. 33(9): 2163-2178. DOI: 10.1002/ptr.6405