Genetic stability analysis associated with salt stress and salicylic acid in fenugreek (Trigonella foenum-graecum) plants

##plugins.themes.bootstrap3.article.main##

ARSHAD NAJI ALHASNAWI

Abstract


Abstract. Alhasnawi AN2023Genetic stability analysis associated with salt stress and salicylic acid in fenugreek (Trigonella foenum-graecumplantsBiodiversitas 24: 3601-3608Salt damage to plants has been attributed to a combination of many factors like the accumulation of toxic metal ions or osmotic stress. This study attempted to understand the mitigating effects of the salicylic acid (SA) treatment on the salt-stressed seed germination ability of the fenugreek plants (Trigonella foenum-graecum); SA pre-treatment along with the salt tolerance capacity have also been tested. The effects of salinity and applied SA on biochemical traits and genetic stability of plantshave been estimated in this study. Respective molecular and biochemical changes occurring in plants as well as genetic analysis have been performed. The results indicated that exogenous application of SA(0.4 mmol) improved the biochemical traits in the seedlings. The evaluation of the genetic stability of the plants was also conducted. Whereas DNA marker-based genetic stability estimates are considered a reliable, accurate, and advanced technique.The Inter-Simple Sequence Repeats (ISSR) analysis has been performed with the help of 7 ISSRs primers. The 6 ISSRs primers generated 54 fragments in total, with an average of 4.5 bands for every primer. The ISSR did not reveal any polymorphic bands. Finally, it has been concluded that exogenous SA can be effectively used as a potential growth regulator for improving the biochemical traits and salinity stress tolerance of the fenugreek plants and stimulating its medicinal properties. Furthermore, ISSR markers were seen to be a good tool as potential diagnostic markers for testing the genetic stability of plants.


##plugins.themes.bootstrap3.article.details##

References
Abate T. 2017. Inter simple sequence repeat (ISSR) markers for genetic diversity studies in Trifolium species. Advances in Life Sci. and Technol. 55: 34–37. https://www.iiste.org/Journals/index.php/ALST/article/view/36332/37344
Affenzeller M.J., Darehshouri A., Andosch A., Lütz C., Lütz-Meindl U. 2009. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. of Experim. Bot. 60(3): 939–54. https://doi.org/10.1093/jxb/ern348
Al-Janabi A.S.A., Alhasnawi A.N. 2021. Determination of genetic diversity based on RAPD molecular marker and ParARF3 gene expressions in some Apricot genotypes in Iraq. Basrah J. Agric. Sci. 34(2): 60-74. https://doi.org/10.37077/25200860.2021.34.2.05
Al Khateeb W., Bahar E., Lahham J., Schroeder D., Hussein E. 2013. Regeneration and assessment of genetic fidelity of the endangered tree Moringa peregrina (Forsk.) Fiori using Inter Simple Sequence Repeat (ISSR). Physiol. and Mol. Biol. of Plants 19(1): 157–164. https://doi.org/10.1007/s12298-012-0149-z
Alhasnawi A.N., Zain C.R., Kadhimi A.A., Isahak A., Mohamad A., Wan Yusoff W.M. 2017. Relationship observed between salinity-tolerant callus cell lines and anatomical structure of Line 2 (Oryza sativa L.) indica under salinity stress. Biocatalysis and Agri. Biotech.10: 367–378. https://doi.org/10.1016/j.bcab.2017.04.016
Alhasnawi A.N, Radziah C.-E., Kadhimi A.A., Isahak A., Mohamad A. 2016. Enhancement of antioxidant enzyme activities in rice callus by ascorbic acid under salinity stress. Biologia Plantarum 60(4): 783–787. https://doi.org/10.1007/s10535-016-0603-9
Alhasnawi A.N. 2019a. Role of proline in plant stress tolerance: A mini review. Res. on Crops 20(1): 223–229. https://doi.org/10.31830/2348-7542.2019.032
Alhasnawi A.N. 2019b. ?-glucan-mediated alleviation of NaCl stress in Ocimum basilicum L. in relation to the response of antioxidant enzymes and assessment DNA marker. J. of Ecological Eng. 20(8): 90–99. https://doi.org/10.12911/22998993/110790
Alhsanwi A.N., Zain C.R., Kadimi A.A., Ishakb A., Mohamad A., Ashraf M.F., Yusoff W. 2016. Applications of polysaccharides (?-glucan) for physiological and biochemical parameters for evaluation rice tolerance under salinity stress at seedling stage. J. of Crop Sci. and Biotech. 19(5): 353–362. https://doi.org/10.1007/s12892-016-0009-4
Amirinejad A.A., Sayyar M., Ghanbari F., Kordi S. 2017. Salicylic acid improves salinity alkalinity tolerance in pepper (Capsicum annuum L.). Adv. Hort. Sci. 31(3): 157–163. https://doi.org/10.13128/ahs-21954
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205–207. https://doi.org/10.1007/BF00018060
Cakmak I., Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in Bean leaves. Plant Physiol. 98: 1222–1227. https://doi.org/10.1104/pp.98.4.1222
Carillo P., Annunziata M. G., Pontecorvo G., Fuggi A., Woodrow P. 2011. Salinity stress and salt tolerance. In Shanker, A. (Ed.), Abiotic Stress in Plants-Mechanis and Adapt. InTech. https://doi.org/10.5772/22331
Dangi R. S., Lagu M.D., Choudhary L.B., Ranjekar P. K., Gupta V.S. 2004. Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Bio. 4(13): 1–11. https://doi.org/10.1186/1471-2229-4-13
Demiral T., Türkan I. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Envi. and Exper. Bot. 53(3): 247–257. https://doi.org/10.1016/j.envexpbot.2004.03.017
El-Gebaly, A.A., Sadek, E.S., Taha, N.M. and Abou Hadid, A.F. 2022. Effect of salinity on seed germination, growth and Amino Acid content in Fenugreek (Trigonella faenum-graecum L) sprouts. Arab Univ J Agric Sci. 30(2):1-9. https://www.academia.edu/82391187/Effect_of_Salinity_on_Seed_Germination_Growth_and_Amino_Acid_Content_in_Fenugreek_Trigonella_faenum_graecum_L_Sprouts
Fernández-García N., Olmos E., Bardisi E., García-De la Garma J., López-Berenguer C., Rubio-Asensio J.S. 2014. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J. of Plant Physiol. 171(5): 64–75. https://doi.org/10.1016/j.jplph.2013.11.004
Giannopolitis C.N., Ries S.K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59(2):309-14. https://doi.org/10.1104/pp.59.2.309
Goodwin T.W. 1977. Chemistry and biochemistry of plant pigments (2nd edition). FEBS Letters 74(1): 155–162. https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/0014-5793%2877%2980784-9
Hakim M., Juraimi A.S., Hanafi M.M., Ismail M.R., Selamat A., Rafii M.Y., Latif M. A. 2014. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BioMed Res. Intern.2014: ID 208584. https://doi.org/10.1155/2014/208584
Hand M.J., Taffouo V.D., Nouck A.E., Nyemene K.P.J., Tonfack L.B., Meguekam T.L., Youmbi E. 2017. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Not Bot. Horti. Agrobo. 45(2): 481–490. https://doi.org/10.15835/nbha45210928
Isayenkov S.V., Maathuis F.J.M. 2019. Plant salinity stress many unanswered questions remain. Frontiers in Plant Sci. 10(80): 1–11. https://doi.org/10.3389/fpls.2019.00080
Kar M., Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57: 315–319.
Kaur N., Kaur N., Saggoo M.I.S. 2022. Conservation strategies for medicinal plants in the face of environmental challenges. In Environmental Challenges and Medicinal Plants (pp. 461-485). Springer, Cham. https://doi.org/10.1007/978-3-030-92050-0_20
Li M., Zhao Z., Miao X.J. 2013. Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genetic Resour. and Crop Evolution 60(8): 2293–2302. https://doi.org/10.1007/s10722-013-9996-x
Ling K.H., Kian C.T., Hoon T.C. 2009. Medicinal Plants: an liiustrated, scientific and medicinal approach. World Scientific Publishing Co., Inc., Hackensack, NJ, USA. https://doi.org/10.1080/10496470903379027
Lisar S.Y.S., Motafakkerazad R., Hossain M.M., Rahman, I.M.M. 2012. Water Stress in Plants: Causes, Effects and Responses. In Water Stress. https://doi.org/10.5772/39363
Ma X., Zheng J., Zhang X., And, Q.H., Qian R. 2017. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Frontiers in Plant Sci. 8: 1–13. https://doi.org/10.3389/fpls.2017.00600
Mandal A.M., Alhasnawi A.N., Jasim H. M., Mohamad A. 2019. Evaluation of salt stress and molecular analysis of genetic variation of Iraqi rice cultivars. Biodiversitas 20(11): 3309–3314. https://doi.org/10.13057/biodiv/d201125
Misra N., Saxena P. 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci. 177(3): 181–189. https://doi.org/10.1016/j.plantsci.2009.05.007
Mohamad A., Alhasnawi A.N., Kadhimi A.A., Isahak A., Yusoff W.M.W., Radziah C. C. 2017. DNA isolation and optimization of ISSR-PCR reaction system in Oryza sativa L. Intern. J. on Advanc. Sci., Eng. and Infor. Techn. 7(6): 2088–5334. http://insightsociety.org/ojaseit/index.php/ijaseit/article/view/1621
Mohammadi R., Amiri S., Montakhabi Kalajahi V. 2022. ISSR markers efficiency to assess cool-season grass species genetic diversity and phylogenetic relationships. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2022: 1-9. https://doi.org/10.1007/s40011-022-01374-y
Monfared M.A., Samsampour D., Sharifi-Sirch G.R., Sadeghi F. 2018. Assessment of genetic diversity in Salvadora persica L. based on inter simple sequence repeat (ISSR) genetic marker. J. of Genetic Eng. and Biot. 16: 661–667. https://doi.org/10.1016/j.jgeb.2018.04.005
Morsi M.M., Abdelmigid, H.M., Aljoudi N.G.S. 2018. Exogenous salicylic acid ameliorates the adverse effects of salt stress on antioxidant system in Rosmarinus officinalis L. Egypt. J. Bot. 58(2): 249–263. https://doi.org/10.21608/ejbo.2018.1772.1124
Muchate N.S., Nikalje G.C., Rajurkar N.S., Suprasanna P., Nikam T.D. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botani. Review 82(4): 371–406. https://doi.org/10.1007/s12229-016-9173-y
Muthulakshmi S., Lingakumar K. 2017. Role of salicylic acid (SA) in plants-A review. Inter. J. of Appl. Res. 3(3): 33–37. https://www.allresearchjournal.com/archives/2017/vol3issue3/PartA/3-2-94-381.pdf
Nayak S.A., Kumar S., Satapathy K., Moharana A., Behera B., Barik, D. P., Acharya, L., Mohapatra, P. K., Jena, P. K., Naik, S. K. 2013. In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physio. Plantarum 35(1): 195–203. https://doi.org/10.1007/s11738-012-1063-2
Ng W.L., Tan, S.G. 1994. Inter-simple sequence repeat (ISSR) markers: Are we doing it right. ASM Sci. J. 9(1): 30–39. https://www.semanticscholar.org/paper/Inter-Simple-Sequence-Repeat-(-ISSR-)-Markers-%3A-Are-Ng-Tan/3e29df345c85c3bf07838001ee1ee001d599f8c5
Nisa M.-U., Huang Y., Benhamed M., Raynaud C. 2019. The plant DNA damage response: signaling pathways leading to growth inhibition and putative role in response to stress conditions. Frontiers in Plant Sci. 10(653): 1–12. https://doi.org/10.3389/fpls.2019.00653
Parida A.K., Das A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxico. and Envi. Safety 60: 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Pessarakli, M. 2019. Handbook of plant and crop stress, Fourth Edition (4th ed.). CRC Press. https://doi.org/10.1201/9781351104609
Rafique N., Raza S.H., Qasim M., Iqbal N. 2011. Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt. Pak. J. Bot. 43(6): 2677–268. http://www.pakbs.org/pjbot/PDFs/43(6)/05.pdf
Ratnakar A., Rai, A. 2014. Improvement of salt tolerance in Trigonella foenum-graecum L. var. PEB by plant growth regulators. J. of Stress Physio. & Bioche. 10(2): 136–143. http://www.jspb.ru/issues/2014/N2/JSPB_2014_2_135-143.pdf
Saberali S.F., Moradi M. 2019. Effect of salinity on germination and seedling growth of Trigonella foenum-graecum, Dracocephalum moldavica, Satureja hortensis and Anethum graveolens. J. of the Saudi Society of Agr. Sci. 18: 316–323. https://doi.org/10.1016/j.jssas.2017.09.004
Sajid Z.A., Aftab F. 2014. Plant regeneration from in vitro-selected salt tolerant callus cultures of Solanum tuberosum L. Pak. J. Bot. 46(4): 1507–1514. http://www.pakbs.org/pjbot/PDFs/46(4)/47.pdf
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. of Bot. ID 217037: 1–26. https://doi.org/10.1155/2012/217037
Sherya J., Swati P., Jyothi G., Danapur V. 2019. Preliminary phytochemical and pharmacognostic studies on a well known medicinal plant Trigonella foenum-graecum. Ternational J. of Pharmacoy and Chinese Medicine 3(4): 000192. https://doi.org/10.23880/ipcm-16000192
Shakoor A., Zaib G., Zhao F., Li W., Lan X., Esfandani-Bozchaloyi S. 2022. ISSR markers and morphometry determine genetic diversity and population structure in Hedera helix L. Czech J. Genet. Plant Breed. 58: 73?82. https://doi.org/10.17221/93/2021-CJGPB
Singh P.K., Shahi S.K., Singh, A.P. 2015. Effects of salt stress on physico-chemical changes in maize (Zea mays L.) plants in response to salicylic acid. Indian J. of Plant Sci. 4(1): 69–77. https://www.cibtech.org/J-Plant-Sciences/PUBLICATIONS/2015/Vol-4-No-1/13-JPS-DEC-016-2014-PRAMOD-EFFECTS-SALICYLIC.pdf
Song J., Bent, A. F. 2014. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLOS Pathogens 10(4): e1004030. https://doi.org/10.1371/journal.ppat.1004030
Taylor P., Patade V. Y. 2011. Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. J. of Plant Interac. 6(4): 275–282. https://doi.org/10.1080/17429145.2011.557513
Tesfaye K., Govers K., Bekele E., Borsch T. 2014. ISSR fingerprinting of Coffea arabica throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces. Plant Systematics and Evolu. 300(5): 881–897. https://doi.org/10.1007/s00606-013-0927-2
Tiwari J.K., Chandel P., Gupta S., Gopal J., Singh B.P., Bhardwaj V. 2013. Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physio. and Molecular Biol. of plants: An Intern. J. of Functional Plant Biol. 19(4): 587–95. https://doi.org/10.1007/s12298-013-0190-6
Türkan I., Demiral T. 2009. Recent developments in understanding salinity tolerance. Enviro. and Experim. Bot. 67(1): 2–9. https://doi.org/10.1016/j.envexpbot.2009.05.008
Yin Z.-F., Zhao B., Bi W.-L., Chen L., Wang Q.-C. 2013. Direct shoot regeneration from basal leaf segments of Lilium and assessment of genetic stability in regenerants by ISSR and AFLP markers. In Vitro Cellular & Develo. Bio. Plant 49(3): 333–342. https://doi.org/10.1007/s11627-013-9501-4
Zandi P., Basu S.K., Cetzal-Ix W., Kordrostami M., Chalaras S.K., Khatibai L.B. 2017. Fenugreek (Trigonella foenum-graecum L.) An Important Medicinal and Aromatic Crop.pdf. In El-Shemy, H. (Ed.), Active Ingredients from Aromatic and Medicinal Plants. InTechOpen. https://doi.org/10.5772/66506
Zhao H., Wang Y., Yang D., Zhao X., Li N., Zhou Y. 2016. An analysis of genetic diversity in Marphysa sanguinea from different geographic populations using ISSR polymorphisms. Bioch. Systematics and Ecology 64(52): 65–69. https://doi.org/10.1016/j.bse.2015.11.002