Diversity and potential of herbaceous plants as mercury (Hg) hyperaccumulators in small-scale gold mining sites in Pancurendang, Banyumas, Indonesia

##plugins.themes.bootstrap3.article.main##

ENI MURYANI
SAJIDAN
MARIA THERESIA SRI BUDIASTUTI
PRANOTO

Abstract

Abstract. Muryani E, Sajidan, Budiastuti MTS, Pranoto. 2023. Diversity and potential of herbaceous plants as mercury (Hg) hyperaccumulators in small-scale gold mining sites in Pancurendang, Banyumas, Indonesia. Biodiversitas 24: 3378-3386. Plants resistant to mercury can be used as an alternative to processing gold mining waste with the phytoremediation method. The study aimed to inventory herbaceous plant species in artisanal and small-scale gold mining (ASGM) sites in Pancurendang Village (Banyumas, Central Java, Indonesia), measure mercury concentrations in plants and root zones, and analyze the potential of herbaceous plants as mercury (Hg) hyperaccumulators. Herbaceous plants were cataloged by purposive sampling with multiple quadrats of 2m x 2m in 14 locations and then analyzed to obtain density, frequency, dominance, importance value, and diversity index. Biomass and Hg concentrations were measured from selected herbaceous plants and soil samples of the root zone. The Biological Accumulation Coefficient (BAC) was calculated to determine the plants' potential as Hg hyperaccumulators. Plant inventory identified 54 herbaceous plant species belonging to 26 families, with Paspalum conjugatum P.J.Bergius being the dominant species. In the root zones, Hg was found at 11-73 ppm and 7.6-85.36 ppm in 19 species. Ipomea aquatica Forssk. accumulated the highest concentration (85.36 ppm) and absorbed the greatest amount of Hg (5.25 mg). Based on their BACs, the nineteen species were categorized into moderate to high (hyper) accumulators, with Plectranthus sp. having the highest BAC of 4.54.

##plugins.themes.bootstrap3.article.details##

References
Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, Li J. 2014. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol. 14(1):1–15. https://doi.org/10.1186/s12870-014-0190-x.
Ashraf M, Otzurk M, Ahmad SA. 2010. Plant adaptation and phytoremediation. Springer Dordrecht Heidelberg. New York.
Azeez NM. 2021. Bioaccumulation and phytoremediation of some heavy metals (Mn, cu, zn and pb) by bladderwort and duckweed. Biodiversitas. 22(5):2993–2998. https://doi.org/10.13057/biodiv/d220564.
Badan Standardisasi Nasional. 2009. Batas maksimum cemaran logam berat dalam pangan. Standar Nasional Indonesia (SNI) 7387: 2009. ICS 67.220.20. [Indonesian].
Betancur-Corredor B, Loaiza-Usuga JC, Denich M, Borgemeister C. 2018. Gold mining as a potential driver of development in Colombia: Challenges and opportunities. J Clean Prod. 199:538–553. https://doi.org/10.1016/j.jclepro.2018.07.142.
Chamba I, Rosado D, Kalinhoff C, Thangaswamy S, Sánchez-Rodríguez A, Gazquez MJ. 2017. Erato polymnioides – A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. Chemosphere. 188:633–641. https://doi.org/10.1016/j.chemosphere.2017.08.160.
Esdaile LJ, Chalker JM. 2018. The mercury problem in artisanal and small-scale gold mining. Chem - A Eur J. 24(27):6905–6916. https://doi.org/10.1002/chem.201704840.
Fiqri A, Utomo WH, Handayanto E. 2017. Mycophytoextraction of mercury from small-scale gold mine tailings contaminating agricultural land and its effect on maize growth. KnE Life Sci. 2(6):203. https://doi.org/10.18502/kls.v2i6.1041.
Göthberg A, Greger M, Bengtsson BE. 2002. Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ Toxicol Chem. 21(9):1934–1939. https://doi.org/10.1002/etc.5620210922.
Handayani T, Maarif MS, Riani E, Djazuli N. 2019. Mercury levels and tolerable weekly intakes (TWI) of tuna and tuna-like species from the Southern Indian Ocean (Indonesia): Public health perspective. Biodiversitas. 20(2):504–509. https://doi.org/10.13057/biodiv/d200229.
Handayanto E, Nuraini Y, Muddarisna N, Syam N, Fiqri A. 2017. Fitoremediasi dan phytomining logam berat pencemar tanah. Universitas Brawijaya Press. Malang.[Indonesian].
Hatar H, Rahim SA, Razi WM, Sahrani FK. 2013. Heavy metals content in acid mine drainage at abandoned and active mining area. AIP Conf Proc. 1571(December 2013):641–646. https://doi.org/10.1063/1.4858727.
Hidayati N, Juhaeti T, Syarif F. 2009. Mercury and cyanide contaminations in gold mine environment and possible solution of cleaning up by using phytoextraction. Hayati J Biosci. 16(3):88–94. https://doi.org/10.4308/hjb.16.3.88.
Hisam NIB, Zakaria MZ, Azid A, Bakar MFA, Samsudin MS. 2022. Phytoremediation process of water spinach (Ipomoea aquatica) in absorbing heavy metal concentration in wastewater. J Agrobiotechnology. 13(1S):131–144. https://doi.org/10.37231/jab.2022.13.1s.322.
Idris M, Abdullah SRS, Titah HS, Latif MT, Abasa AR, Husin AK, Hanima RF, Ayub R. 2016. Screening and identification of plants at a petroleum contaminated site in malaysia for phytoremediation. J Environ Sci Manag [Internet]. 19(June):27–36. https://doi.org/10.47125/jesam/2016_1/04.
Iqbal J, Baig MA. 2016. Effect of nutrient concentration and ph on growth and nutrient removal efficiency of duckweed (Lemna minor) from natural solid waste leachate. J Heal Med. 1(3):1–7. https://www.researchgate.net/publication/337888427219.
Irwan M, Rukmini. 2021. Mercury ( Hg ) Concentration as tailing from illegal traditional gold mining activity in Tambang Sawah Lebong District. 15(6):60–62. https://doi.org/10.9790/2402-1506016062.
Ismail MH, Fuad MFA, Zaki PH, Jemali NJN. 2017. Analysis of importance value index of unlogged and logged peat swamp forest in Nenasi Forest Reserve, Peninsular Malaysia. Bonorowo Wetl. 7(2):74–78. https://doi.org/10.13057/bonorowo/w070203.
Jaskulak M, Grobelak A, Vandenbulcke F. 2020. Modelling assisted phytoremediation of soils contaminated with heavy metals – Main opportunities, limitations, decision making and future prospects. Chemosphere. 249:126196. https://doi.org/10.1016/j.chemosphere.2020.126196.
Jianshuang W, Xianzhou Z, Zhenxi S, Peili S, Chengqun Y, Minghua S, Xiaojia L. 2019. Species richness and diversity of Alpine Grasslands on the Northern Tibetan Plateau: Effects of grazing exclusion and growing season precipitation. J Resour Ecol. 3(3):236. https://doi.org/10.5814/j.issn.1674-764x.2012.03.006.
Juhaeti T, Hidayati N, Syarif F, Hidaya S. 2009. Uji potensi tumbuhan akumulator merkuri untuk fitoremediasi lingkungan tercemar akibat kegiatan penambangan emas tanpa izin. J Biol Indones. 6(1):1–11.[Indonesian].
Khan IU, Qi SS, Gul F, Manan S, Rono JK, Naz M, Shi XN, Zhang H, Dai ZC, Du DL. 2023. A green approach used for heavy metals ‘phytoremediation’ via invasive plant species to mitigate environmental pollution: A review. plants. 12(4). https://doi.org/10.3390/plants12040725.
Khodijah NS, Suwignyo RA, Harun MU, Robiartini L. 2019. Phytoremediation potential of some grasses on lead heavy metal in tailing planting media of former tin mining. Biodiversitas. 20(7):1973–1982. https://doi.org/10.13057/biodiv/d200725.
Koleli N, Demir A, Kantar C, Atag GA, Kusvuran K, Binzet R. 2015. Heavy metal accumulation in serpentine flora of Mersin-Findikpinari (Turkey) - Role of ethylenediamine tetraacetic acid in facilitating extraction of nickel. Elsevier Inc. https://doi.org/10.1016/B978-0-12-799937-1.00022-X.
Krupnova TG, Naumova NL, Rakova O V., Burmistrova OM, Burmistrov EA. 2021. Apple trees as a possible monitor and phytoremediator of urban and industrial areas in Chelyabinsk, Russian Federation. Biodiversitas. 22(7):2824–2828. https://doi.org/10.13057/biodiv/d220732.
Krupnova TG, Rakova O V., Plaksina AL, Gavrilkina S V., Baranov EO, Abramyan AD. 2020. Short communication: Effect of urban greening and land use on air pollution in Chelyabinsk, Russia. Biodiversitas. 21(6):2716–2720. https://doi.org/10.13057/biodiv/d210646.
Liu Z, Chen B, Wang L ao, Urbanovich O, Nagorskaya L, Li X, Tang L. 2020. A review on phytoremediation of mercury contaminated soils. J Hazard Mater. 400(June):123138. https://doi.org/10.1016/j.jhazmat.2020.123138.
Mariwy A, Manuhutu JB, Frans D. 2021. Bioaccumulated mercury by several types of plants in ex-traditional gold processing area, Gogorea Village, Buru Island. Indones J Chem Res. 8(2):151–158. https://doi.org/10.30598//ijcr.2021.9-abr.
Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S. 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere. 127:58–63. https://doi.org/10.1016/j.chemosphere.2014.12.073.
Marrugo-Negrete J, Marrugo-Madrid S, Pinedo-Hernández J, Durango-Hernández J, Díez S. 2016. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci Total Environ. 542:809–816. https://doi.org/10.1016/j.scitotenv.2015.10.117.
Meléndez-Ackerman E, Rojas-sandoval J, Fernández DS, González G, Lopez H, Sustache J, Morales M, García-Bermúdez M, Aragón S. 2016. Associations between soil variables and vegetation structure and composition of Caribbean Dry Forests. Caribb Nat.(1):176–198.
Meutia AA, Lumowa R, Sakakibara M. 2022. Indonesian artisanal and small-scale gold mining—A narrative literature review. Int J Environ Res Public Health. 19(7). https://doi.org/10.3390/ijerph19073955.
Muddarisna N, Krisnayanti BD, Utami SR, Handayanto E. 2013. Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Appl Ecol Environ Sci. 1(3):27–32. https://doi.org/10.12691/aees-1-3-1.
Muddarisna N, Siahaan BC. 2014. Application of organic matter to enhance phytoremediation of mercury contaminated soils using local plant species: a case study on small-scale gold mining locations in Banyuwangi of East Java. J Degrad Min Lands Manag. 2(1):251–258. https://doi.org/10.15243/jdmlm.2014.021.251.
Peraturan Pemerintah Republik Indonesia. 2021. Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup.[Indonesian].
Prasetya JD, Santoso DH, Muryani E, Ramadhamayanti T, Sukma Yudha BA. 2021. Carrying capacity of mercury pollution to rivers in the gold mining area of Pancurendang Village, Banyumas. J CleanWAS. 5(1):01–04. https://doi.org/10.26480/jcleanwas.01.2021.01.04.
Razzaq R. 2017. Phytoremediation: An environmental friendly technique - A review. J Environ Anal Chem. 04(02):2–5. https://doi.org/10.4172/2380-2391.1000195.
Rolnik A, Olas B. 2021. The plants of the asteraceae family as agents in the protection of human health. Int J Mol Sci. 22(6):1–10. https://doi.org/10.3390/ijms22063009.
Schück M, Greger M. 2020. Plant traits related to the heavy metal removal capacities of wetland plants. Int J Phytoremediation. 22(4):427–435. https://doi.org/10.1080/15226514.2019.1669529.
Soe PS, Kyaw WT, Arizono K, Ishibashi Y, Agusa T. 2022. Mercury pollution from artisanal and small-scale gold mining in Myanmar and Other Southeast Asian Countries. Int J Environ Res Public Health. 19(10). https://doi.org/10.3390/ijerph19106290.
Solikhatun I, Maridi M, Sri Budiastuti MT. 2020. Analysis of vegetation and community attitude as the reforestation efforts at greenbelt area of multipurpose reservoir of Wonogiri. Caraka Tani J Sustain Agric. 35(2):228. https://doi.org/10.20961/carakatani.v35i2.34616.
Sunariyati S. 2018. Ethnobotanical studies of plants utilization in the gold mining region in Central Kapuas, Indonesia. Biodiversitas. 19(1):215–221. https://doi.org/10.13057/biodiv/d190129.
Takarina ND, Sinaga IL, Kultsum TR. 2021. Riparian plant diversity in relation to artisanal mining sites in Cikidang River, Banten, Indonesia. Biodiversitas. 22(1):401–407. https://doi.org/10.13057/biodiv/d220149.
Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. https://doi.org/10.1155/2011/939161.
Tomiyasu T, Kodamatani H, Hamada YK, Matsuyama A, Imura R, Taniguchi Y, Hidayati N, Rahajoe JS. 2017. Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia. Environ Sci Pollut Res. 24(3):2643–2652. https://doi.org/10.1007/s11356-016-7998-x.
Utami UBL, Susanto H, Cahyono B. 2020. Neutralization acid mine drainage (AMD) using NaOH at PT. Jorong Barutama Grestone, Tanah Laut, South Borneo. Indones J Chem Anal [Internet]. 3(1):17–21. https://doi.org/10.20885/ijca.vol3.iss1.art3.
Zakaria Z, Zulkafflee NS, Mohd Redzuan NA, Selamat J, Ismail MR, Praveena SM, Tóth G, Abdull Razis AF. 2021. Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants. 10(6). https://doi.org/10.3390/plants10061070.
Zhang L, Zhang P, Yoza B, Liu W, Liang H. 2020. Phytoremediation of metal-contaminated rare-earth mining sites using Paspalum conjugatum. Chemosphere. 259:127280. https://doi.org/10.1016/j.chemosphere.2020.127280

Most read articles by the same author(s)