Evaluation Deoxyribonucleic acid (DNA) fragmentation of local Indonesian cattle frozen sperm using Halomax method

##plugins.themes.bootstrap3.article.main##

TEGUH ARI PRABOWO
SIGIT BINTARA
LIES MIRA YUSIATI
PRADITA IUSTITA SITARESMI
DIAH TRI WIDAYATI

Abstract

Abstract. Prabowo TA, Bintara S, Yusiati LM, Sitaresmi PI, Widayati. 2023. Evaluation Deoxyribonucleic acid (DNA) fragmentation of local Indonesian cattle frozen sperm using Halomax method. Biodiversitas 24: 2225-2230. Deoxyribonucleic acid (DNA) is a molecular chain containing genetic material that determines the quality of each individual produced. DNA damage in cattle can affect fertility and miscarriage of embryos. There is no simple research on DNA damage in local Indonesian cattle (Bos indicus Linnaeus 1758); therefore, miscarriage and infertility cases in Indonesia are still high, one of which can be attributed to sperm DNA damage. This study aimed to evaluate DNA damage in the frozen semen of local Indonesian cattle and suggested SDF (Sperm DNA Fragmentation) inclusion screening as the main requirement for frozen semen. The materials used in this study were 54 straws of frozen semen from nine males from three different types of local cattle, including Bali, Madura, and Aceh. Each type consisted of three bulls, each with six replicates. Sperm-Bos-Halomax was used to examine sperm DNA damage. Data were analyzed using one-way analysis of variance (ANOVA). Aceh cattle had the highest post average compared to Bali and Madura at 63.33±2.43%. Abnormality of Balinese cattle had the lowest average compared to Aceh and Madura at 8.83±1.04%. Evaluation of sperm DNA damage in local cattle using the Sperm-Bos-Halomax® method showed that the highest average DNA damage was 1.72±0.62% in Aceh, and the lowest was 1.67±0.66% in Madura cattle. The sperm DNA damage in Bali cattle was 1.67±0.70%. The sperm DNA quality in the frozen semen of the local cattle in this study was good, but it is still necessary to determine SDF as the main standard in frozen semen.

##plugins.themes.bootstrap3.article.details##

References
Abdillah DA, Setyawan EMN, Oh HJ, Ra K, Lee SH, Kim MJ, Lee BC. 2019. Iodixanol supplementation during sperm cryopreservation improves protamine level and reduces reactive oxygen species of canine sperm. J. Vet. Sci. 20: 79-86. DOI: 10.4142/jvs.2019.20.1.79.
Agus A, Widi TSM. 2018. Current situation and future prospects for beef cattle production in Indonesia - A review. Asian-Australasian J. Anim. Sci. 31: 976-983. DOI: 10.5713/ajas.18.0233.
Arif AA, Maulana T, Kaiin EM, Purwantara B, Arifiantini RI, Memili E. 2020. Comparative analysis of various step-dilution techniques on the quality of frozen Limousin bull semen. Vet. World 13: 2422-2428. DOI: 10.14202/vetworld.2020.2422-2428.
Baiee FH, Wahid H, Rosnina Y, Arif O, Yimer, N. 2018. Sperm DNA impairment in the bull: Causes, influences on reproduction and evaluations. J. Trop. Agr. Sci. 41 (1): 63-80. ISSN: 1511-3701.
Bollwein, H., Bittner, L., 2018. Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim. Reprod. 15(Suppl 1): 703-710. doi: 10.21451/1984-3143-AR2018-0041
Bustani, G.S., Baiee, F.H., 2021. Semen extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Vet. World., 14(5):1220–1233. doi: 10.14202/vetworld.2021.1220-1233
Collodel, G., Ferretti, F., Masini, M., Gualtieri, G., Moretti, E., 2021. Influence of age on sperm characteristics evaluated by light and electron microscopies. Sci. Rep. 11(1): 4989. doi: https://www.nature.com/articles/s41598-021-84051-w
Correia LFL, Santo CGE, Braga RF, Paula CJC, Silva AA, Brandao FZ, Freitas VJF, Ungerfeld R, Fabjan JMGS. 2021. Addition of antifreeze protein type I or III to extenders for ram sperm cryopreservation. Cryobiology 98: 194-200. DOI: 10.1016/j.cryobiol.2020.11.001.
de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Dyer S, Kupka M, David AG. 2020. International committee for monitoring assisted reproductive technologies world report: Assisted reproductive technology 2012. Hum. Reprod. 35: 1900-1913. DOI: 10.1093/humrep/deaa090
Enciso M, Cisale H, Johnston SD, Sarasa J, Fernández JL, Gosálvez J. 2011. Major morphological sperm abnormalities in the bull are related to sperm DNA damage. Theriogenology 76: 23–32. DOI: 10.1016/j.theriogenology.2010.12.034
Fernandez NA, Santos LS., Barrajon MC, Mozas P, de Mercado E, Caceres E, Garrafa A, Gonzalez MJV, Perez VN, Oliet A, Astiz S, Perez GSS. 2021. Effects of extender type, storage time, and temperature on bull semen parameters. Biology (Basel). 10: 630-635. DOI: 10.3390/biology10070630
Herbowo MT, Arifiantini RI, Karja NWK, Sianturi RG. 2019. Cryopreservation of swamp Bufallo semen in skim milk yolk based diluent with two different cryoprotectants. 42(1):13-18. DOI: 10.5398/tasj.2019.42.1.13
Hussain A, Andrabi A, Hussain SSA, Sarwat J. 2019. Effect of cryopreservation on CASA characteristics, mitochondrial transmembrane potential, plasma and acrosome integrities, morphology and in vivo fertility of buffalo bull spermatozoa. 40: 173-180.
Indriastuti R, Ulum MF, Arifiantini RI, Purwantara B. 2020. Individual variation in fresh and frozen semen of Bali bulls (Bos sondaicus). Vet. World 13: 840-846. DOI: 10.14202/vetworld.2020.840-846
Isnaini N, Wahjuningsih S, Ma’ruf A, Witayanto DA. 2019. Effects of age and breed on semen quality of beef bull sires in an indonesian artificial insemination center. Livest. Res. Rural Dev. 31: 132–136.
Kumaresan A, Johannisson A, Al-Essawe EM, Morrell JM. 2017. Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. J. Dairy Sci. 100, 5824–5836. DOI: 10.3168/jds.2016-12484
Kumaresan A, Gupta MD, Datta TK, Morrell JM. 2020. Sperm DNA integrity and male fertility in farm animals: a review. Front. Vet. Sci. 7: 321-335. DOI: 10.3389/fvets.2020.00321
Kurniawan MB, Isnaini N, Kholifah Y. 2020. Fresh semen quantity and quality of madura bulls in relation to age. Russ. J. Agric. Socio-Economic Sci. 98: 12-15. DOI: 10.18551/rjoas.2020-02.02
Nugraha CD, Widodo N, Kuswati K, Suyadi, S. 2022. The real potential of semen production of bali bull: over year observation at Singosari National Artificial Insemination Center (SNAIC), Singosari-Indonesia, in: Procedings the 2nd International Conference on Environmentally Sustainable Animal Industry (The 2nd ICESAI 2021). University of Brawijaya, Malang. 14 January 2022.
Pardede BP, Agil M, Karja NWK, Sumantri C, Supriatna I, Purwantara B. 2022. PRM1 gene expression and its protein abundance in frozen-thawed spermatozoa as potential fertility markers in breeding bulls. Vet. Sci. 9: 1–15. DOI: 10.3390/vetsci9030111.
Peris-Frau, P., Soler, A.J., Iniesta-Cuerda, M., Martín-Maestro, A., Sánchez-Ajofrín, I., Medina-Chávez, D.A., Fernández-Santos, M.R., García-álvarez, O., Maroto-Morales, A., Montoro, V., Garde, J.J., 2020. Sperm cryodamage in ruminants: Understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int. J. Mol. Sci. 21(8):2781. DOI: 10.3390/ijms21082781
Prabowo TA, Bintara S, Yusiatik LM, Widayati DT. 2022. Detection of DNA damage in frozen bovine semen using eosin staining. Pakistan J. Biol. Sci. 25: 396-400. DOI: 10.3923/pjbs.2022.396.400
Priyanto. 2015. Deteksi kerusakan dna spermatozoa semen segar dan semen beku sapi menggunakan pewarnaan toluidine blue (detection of sperm dna damage infresh and frozen semen using toluidine blue staining). J. Vet. 16: 48–55. http://ojs.unud.ac.id/index.php/jvet/article/view/13318.
Priyanto L, Budiyanto A, Kusumawati A, Kurniasih K. 2019. Pengaruh tingkat kerusakan deoxyribonucleid acid terhadap keguguran pada sapi (Effect of deoxyribonucleic acid damage rate on cattle miscarriage). J. Peternak. Sriwij. 8: 28–35. DOI: 10.33230/JPS.8.1.2019.9380.
Ratnani, H., Suprayogi, T.W., Sardjito, T., Susilowati, S., Azura, S., 2020. Alpha-tocopherol improves sperm quality by regulate intracellular Ca2+ intensity (influx/efflux) of Simmental bull cattle sperm. Infect. Dis. Rep. 12(Suppl 1):8721. DOI: 10.4081/idr.2020.8721
Santoso S, Herdis H, Arifiantini RI, Gunawan A, Sumantri C. 2021. Characteristics and potential production of frozen semen of pasundan bull. Trop. Anim. Sci. J. 44: 24–31. DOI: 10.5398/tasj.2021.44.1.24
Serafini R, Love CC, Coletta A, Mari G, Mislei B, Caso C, Di Palo R. 2016. Sperm DNA integrity in frozen-thawed semen from italian mediterranean buffalo bulls and its relationship to in vivo fertility. Anim. Reprod. Sci. 172: 26-31. DOI: 10.1016/j.anireprosci.2016.06.010
Singh P, Agarwal S, Singh H, Singh S, Verma PK, Butt MS, Sharma U. 2020. Effects of ascorbic acid as antioxidant semen additive in cryopreservation of cross-bred cattle bull semen. Int. J. Curr. Microbiol. Appl. Sci. 9: 3089-3099. DOI: 10.20546/ijcmas.2020.907.364
Suyadi S, Novianti I, Furqon A, Septian WA, Putri RF, Nugraha CD. 2022. Evaluation of semen quality in bali bull based on different body weight and age at the national artificial insemination center, singosari-indonesia. KnE Life Sci. 2022, 465–472. DOI: 10.18502/kls.v0i0.11832
Tanga BM, Qamar AY, Raza S, Bang S, Fang X, Yoon K, Cho J. 2021. Semen evaluation: Methodological advancements in sperm quality-specific fertility assessment - A review. Anim. Biosci. 34: 1253-1270. DOI: 10.5713/ab.21.0072.
Tariq A, Ahmad M, Iqbal S, Riaz MI, Tahir MZ, Ghafoor A, Riaz A. 2020. Effect of carboxylated poly L-Lysine as a cryoprotectant on post-thaw quality and in vivo fertility of Nili Ravi buffalo (Bubalus bubalis) bull semen. Theriogenology 144: 8-15. DOI: 10.1016/j.theriogenology.2019.12.012.
Thippeswamy, V.B., Layek, S.S., Kumaresan, A., Mohanty, T.K., Gupta, A.K., Chakravarty, A.K., Manimaran, A., Prasad, S., 2014. Effects of pedigree and exotic genetic inheritance on semen production traits of dairy bulls. Asian Pacific J. Reprod 3: 13-17. DOI: 10.1016/S2305-0500(13)60178-5
Ugur, M.R., Saber Abdelrahman, A., Evans, H.C., Gilmore, A.A., Hitit, M., Arifiantini, R.I., Purwantara, B., Kaya, A., Memili, E., 2019. Advances in Cryopreservation of Bull Sperm. Front. Vet. Sci. 6(268):1–15. DOI: 10.3389/fvets.2019.00268
Widyastuti I, Luthfah HZ, Hartono YI, Islamadina R, Can AT, Rohman A. 2021. Aktivitas antioksidan temulawak (curcuma xanthorrhiza roxb.) dan profil pengelompokannya dengan kemometrik. Antioxidant activity of temulawak (curcuma xanthorrhiza roxb.) and its classification with chemometrics. Indones. J. Chemom. Pharm. Anal 1: 28–41. DOI: 10.22146/ijcpa.507.
Yan, B., Ye, W., Wang, J., Jia, S., Gu, X., Hu, H., Xiang, W., Wu, T., Xiao, X., 2022. Evaluation of Sperm DNA Integrity by Mean Number of Sperm DNA Breaks Rather Than Sperm DNA Fragmentation Index. Clin. Chem 68: 540-549. DOI: 1093/clinchem/hvab280

Most read articles by the same author(s)