Revealing genetic diversity of wild Phalaenopsis orchids in Thailand through Random Amplified Polymorphic DNA markers

##plugins.themes.bootstrap3.article.main##

SUREEPORN KATE-NGAM
CHATCHAWAN JANTASURIYARAT
PATCHAREE LAKOTE
THIN PROMCHOT
CHANTAMART CHUEAKAEW

Abstract

Abstract. Kate-ngam S, Jantasuriyarat C, Lakote P, Promchot T, Chueakaew C. 2023. Revealing genetic diversity of wild Phalaenopsis orchids in Thailand through Random Amplified Polymorphic DNA markers. Biodiversitas 24: 5409-5417. Wild Phalaenopsis orchids are widely distributed in Thailand, especially along the banks of the Mekong River. The tremendous decrease in the population of these orchids is a matter of concern for maintaining and preventing genetic loss in the natural ecosystem. This study aimed to determine the genetic diversity of 50 wild Phalaenopsis accessions collected from the northeastern of Thailand using random amplified polymorphic DNA (RAPD) markers. The 204 polymorphic bands generated from 27 RAPD primers were employed for fingerprinting these orchid accessions. Dice’s similarity coefficients ranged from 0.43 to 0.98, with an average of 0.65. In general, a dendrogram constructed based on the unweighted pair group method with arithmetic average (UPGMA) grouped these wild Phalaenopsis accessions into two clusters, namely P. pulcherrima and P. ubonensis clusters. The UPGMA clustering pattern and principal component analysis (PCA) corresponded well with their morphological classification and ploidy level. Our results suggest that this wild Phalaenopsis orchid exhibits a moderate level of relatedness. This might be a consequence of habitat destruction and human over-exploitation which limit gene flow and cause genetic drift among populations. The present finding supports the urgent need for a systematic conservation effort of this orchid species in Thailand.

##plugins.themes.bootstrap3.article.details##

References
Averyanov LV. 2009. Doritis pulcherrima var. apiculata (Orchidaceae): A new variety from southern Vietnam and conditions of its natural habitat. Orchids 78 (12):9-16.
Babu KN, Sheeja TE, Minoo D, Rajesh MK, Samsudeen K, Suraby EJ, Kumar IPV. 2021. Random Amplified Polymorphic DNA (RAPD) and derived techniques. In: Besse P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology. Vol. 2222. Humana Press, New York. DOI: 10.1007/978-1-62703-767-9_10.
Boonsrangsoma T. 2020. Genetic diversity of ‘Wan Chak Motluk’ (Curcuma comosa Roxb.) in Thailand using morphological characteristics and random amplification of polymorphic DNA (RAPD) markers. S Afr J Bot 130: 224–230. DOI: 10.1016/j.sajb.2020.01.00.
Cehula M, Jurí¬ková T, Žiarovská J, Ml?ek J, Kysel M. 2019. Evaluation of genetic diversity of edible honeysuckle monitored by RAPD in relation to bioactive substances. Potravin. Slovak J Food Sci 13: 90–496. DOI: 10.5219/1139.
Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, van den Berg C, Schuiteman A. 2015. An updated classification of Orchidaceae. Bot J Linn Soc 177:151–174. DOI: 10.1111/boj.12234.
Choopeng S, Te-chato S, Khawnium T. 2019. The use of RAPD marker for verification of Dendrobium hybrid, D. santana x D. friedericksianum orchid. Intl J Agric Technol 15 (3): 399-408.
Christenson EA. 2001. Phalaenopsis. A. Monograph. Timber Press, Portland, Oregon, USA.
Chung MY, Merilä J, Li J, Mao K, López-Pujol J, Tsumura Y, Chung MG. 2023. Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 11:1116814. DOI: 10.3389/fevo.2023.1116814.
Fay, MF. 2018. Orchid conservation: how can we meet the challenges in the twenty-first century?. Bot Stud 59: 16. DOI:10.1186/s40529-018-0232-z
Givnish, T. J., Spalink, D., Ames, M., Lyon, S. P., Hunter, S. J., Zuluaga, A., Iles, WJD, Clements, MA, Arroyo MTK, Leebens-Mack J, Endara L, Kriebel R, Neubig KM., Whitten WM, Williams NH, Cameron KM. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc Royal Soc B. 282(1814), 20151553. DOI: 10.1098/rspb.2015.1553
Jantasuriyarat C, Ritchuay S, Pattarawat P, Srifah Huehne P, Kate-ngam S. 2012. Development and transferability of EST-SSR and transferability of genomic SSR markers for genetic diversity assessment of Doritis. Biochem Syst Ecol 45: 57–65. DOI: 10.1016/j.bse.2012.07.005.
Kamemoto H, Sakarik R. 1975. Beautiful Thai orchid species. The orchid society of Thailand, Bangkok, Thailand.
Kate-ngam S, Lakote P. 2008. A comparative study of different RAPD-PCR protocols for genetic diversity analysis of Doritis germplasm. Agricultural Sci J 39: 203–206.
Kumari N, Thakur SK. 2014. Randomly amplified polymorphic DNA-a Brief review. Am J Anim Vet 9 (1): 6-13. DOI: 10.3844/ajavsp.2014.6.13.
Nadeem MA, Nawaz MA, Shahid MQ, Do?an Y, Comertpay G, Y?ld?z M, Hatipo?lu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechno Biotechnol Equip 32(2): 261-285. DOI:.1080/13102818.2017.1400401.
Phonyiam S, Rungratchakanon K, Apisitwanich S. 2010. Meiotic behavior in Doritis spp. and Doritis hybrids. In: Proceedings of 48th Kasetsart University Annual Conference: Plants. Kasetsart University Bangkok pp. 47–53.
Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15: 8–15. DOI: 10.1007/BF02772108
Pykälä J. 2019. Habitat loss and deterioration explain the disappearance of populations of threatened vascular plants, bryophytes and lichens in a hemiboreal landscape. Glob Ecol Conserv 18. e00610. DOI: 10.1016/j.gecco.2019.e00610.
Rameshkumar R, Pandian S, Rathinapriya P, Selvi CT, Satish L, Gowrishankar S, Leung DWM, Ramesh M. 2019. Genetic diversity and phylogenetic relationship of Nilgirianthus ciliatus populations using ISSR and RAPD markers: Implications for conservation of an endemic and vulnerable medicinal plant. Biocatal Agric Biotechnol 18: 101072. DOI: 10.1016/j.bcab.2019.101072.
Rao GK, Kapadia C, Patel NB, Desai KD, Murthy PNN. .2020. Genetic diversity analysis of greater yam (Dioscorea alata L.) genotypes through RAPD and ISSR markers. Biocatal Agric Biotechnol 23: 101495. DOI: 10.1016/j.bcab.2020.101495.
Rohlf FJ. 2004. NTSYS-pc numerical taxonomy and multivariate analysis system. Version 2.2. Exster Software, Setauket, New York.
Rungratchakanon K, Phonyiam S, Supaprom T. 2013. Relation of morphology and karyotype in Doritis spp. and their hybrid. KKU Sci J 41(2): 383–394.
Shidfar M, Keskin S, Khah EM, Petropoulos S, Ozdemir FA, Gokcen IS. 2018. RAPD markers reveal genetic variation between Cichorium spinosum L. and Taraxacum sp.: a substantial medicinal plants of Greece. Prog Nutr 20: 153–159. DOI: 10.23751/pn.v20i1-s.5993.
Sudha GS, Ramesh P, Sekhar AC, Krishna T, Bramhachari PV, Riazunnisa K. 2019. Genetic diversity analysis of selected Onion (Allium cepa L.) germplasm using specific RAPD and ISSR polymorphism markers. Biocatal Agric Biotechnol 17: 11–118. DOI: 10.1016/j.bcab.2018.11.007.
Tikendra L, Amom T, Nongdam P. 2019. Molecular genetic homogeneity assessment of micropropagated Dendrobium moschatum Sw. - A rare medicinal orchid, using RAPD and ISSR markers. Plant Gene 19. 100196. DOI: 10.1016/j.plgene.2019.100196.
Tikendra L, Potshangbam AM, Dey A, Devi TR, Sahoo MR, Nongdam P. 2021. RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk. f.- an important endangered orchid. Physiol Mol Biol Plants 27(2):341-357. DOI: 10.1007/s12298-021-00939-x.
Tran TKP, Pham MH, Trinh TH, Widiarsih S, Ho VT. 2022. Investigation of the genetic diversity of jewel orchid in Vietnam using RAPD and ISSR markers. Biodiversitas. 23(9): 4816-4825. DOI: 10.13057/biodiv/d230950.
Yeh FC, Yang RC, Boyle T. 1999. POPGENE Version 1.32. Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta Edmonton.