Molecular detection of the pathogen of Apis mellifera (Hymenoptera: Apidae) in honey in Indonesia

##plugins.themes.bootstrap3.article.main##

IGM RAKA ALPIN ADITYA
HARI PURWANTO

Abstract

Abstract. Aditya IGMRA, Purwanto H. 2023. Molecular detection of the pathogen of Apis mellifera (Hymenoptera: Apidae) in honey in Indonesia. Biodiversitas 24: 2612-2622. Apis honey bees play a major role in global crop pollination. The honey bee population faces various threats, one being entomopathogens, responsible for 13% of honey bees' declining population cases. Some major pathogens are Nosema sp., Melissococcus plutonius, and Paenibacillus larvae. Data on the prevalence of these pathogens is not available in Indonesia. Therefore, this study aimed to detect entomopathogen in Java, Bali, and Sumatra honey. We extracted 30 honey samples from Java, Bali, and Sumatra in this study. DNA from honey amplified by conventional Polymerase Chain Reaction (PCR) to detect Nosema apis, Nosema ceranae, M. plutonius, and P. larvae. Amplicons were sequenced to confirm the species of pathogens detected. Results showed that N. ceranae has a 20% prevalence, found in Java and Bali; M. plutonius was, for the first time, found in Indonesia and only in Java, with a 3.33% prevalence. In comparison, this study didn't find N. apis and P. larvae. Environmental factors were studied for their correlation with the incidence of pathogens. From several factors, only precipitation significantly correlates with the occurrence of N. ceranae and M. plutonius, while other factors do not. This research concludes that honey can be used as source of DNA for pathogens detection and monitoring in a certain area globally.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Latif A, Osman G. 2017. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods. DOI: 10.1186/s13007-016-0152-4
Ansari MJ, Al-Ghamdi A, Adgaba N, Khan KA, Alattal, Y. 2017. Geographical distribution and molecular detection of Nosema ceranae from indigenous honey bees of Saudi Arabia. Saudi Journal of Biological Sciences. DOI: 10.1016/j.sjbs.2017.01.054
Bailey L, Ball BV. 1991. Honey Bee Pathology. 2nd edition. Academic Press Limited, San Diego
Beverley C. 2012. Melissococcus plutonius. CABI Compendium. DOI: 10.1079/cabicompendium.34446.
Bogdanov S, Jurendic T, Sieber R, Gallman P. 2008. Honey for Nutrition and Health: A Review. Journal of the American College of Nutrition 27 (6): 677-689.
Botías C, Anderson DL, Meana A, Garrido-Bailón E, Martín-Hernández R, Higes M. 2012. Further Evidence of an Oriental Origin for Nosema ceranae (Microsporidia: Nosematidae). Journal of invertebrate pathology. DOI: 10.1016/j.jip.2012.02.014
Buchori D, Rizali A, Priawandiputra W, Raffiudin R, Sartiami D, Pujiastuti Y, Jauharlina, Pradana MG, Meilin A, Leatemia JA, Sudiarta IP, Rustam R, Nelly N, Lestari P, Syahputra E, Hasriyanti, Watung JF, Daud IDA, Hariani N, Jihadi A, Johannis M. 2022. Beekeeping and Managed Bee Diversity in Indonesia: Perspective and Preference of Beekeepers. Diversity. DOI: 10.3390/d14010052
Chantawannakul P, de Guzman LI, Li J, Williams GR. 2015. Parasites, Pathogens, and Pests of Honey bees in Asia. Apidologie. DOI:10.1007/s13592-015-0407-5
Dussaubat C, Brunet JL, Higes M, Colbourne JK, Lopez J. 2012. Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera. PLOS ONE. DOI: 10.1371/journal.pone.0037017
Emsen B, Guzman-Novoa E, Hamiduzzaman MM, Eccles L, Lacey B, Ruiz-Pérez RA, Nasr M. 2016. Higher prevalence and levels of Nosema ceranae than Nosema apis infections in Canadian honey bee colonies. Parasitology Research. DOI: 10.1007/s00436-015-4733-3
FAO. 2006. Honey Bee Diseases and Pests: A Practical Guide. Agricultural and Food Engineering Technical Report 4
FAO. 2018. Global Survey Of Honey bees And Other Pollinators. Intergovernmental Technical Working Group On Animal Genetic Resources For Food And Agriculture
Forsgren E, Budge GE, Charrière JD, Hornitzky MAZ. 2013. Standard methods for European foulbrood research. Journal of Apicultural Research. DOI: 10.3896/ibra.1.52.1.12
Forsgren E, Wei S, Guiling D, Zhiguang L, Van Tran T, Tang PT, Fries I. 2014. Preliminary observations on possible pathogen spill-over from Apis mellifera to Apis cerana. Apidologie. DOI: 10.1007/s13592-014-0320-3
Fries I, Chauzat MP, Chen YP, Doublet VG, Elke G, Sebastian H, Mariano M, Dino MH, Raquel N, Myrsini P, Robert R, Gina W, Thomas W, Geoffrey. 2013. Standard Methods for Nosema Research. Journal of Apicultural Research. DOI: 10.3896/IBRA.1.52.1.14
Garrido-Bailon E, Higes M, Martinez-Salvador A, Antunez K, Botias C, Meana A, Prieto L, Martin-Hernandez R. 2013. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay. Microbial Biotechnology. DOI: 10.1111/1751-7915.12070
Goulson D, Nicholis E, Botias C, Rotheray EI. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. DOI: 10.1126/science.1255957
Han SH, Lee DB, Lee DW, Kim EH, Yoon BS. 2008. Ultra-rapid real-time PCR for the detection of Paenibacillus larvae, the causative agent of American Foulbrood (AFB). Journal of Invertebrate Pathology. DOI: 10.1016/j.jip.2008.04.010
Harper LR, Lawson HL, Hahn C. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol Evol. DOI: 10.1002/ece3.4013
Harris IC, Jones PD, Osborn T. 2021. CRU TS4.05: Climatic Research Unit (CRU) Time-Series (TS) version 4.05 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2020). NERC EDS Centre for Environmental Data Analysis.
Hawkins J, de Vere N, Griffith A, Ford CR, Allainguillaume J. 2015. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. PLOS ONE. DOI: 10.1371/journal.pone.0134735
Higes M, Martín R, Meana A. 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology. DOI: 10.1016/j.jip.2006.02.005
Higes M, Martín-Hernández R, Garrido-Bailón E, García-Palencia P, Meana A. 2008. Detection of Infective Nosema ceranae (Microsporidia) Spores in Corbicular Pollen of Forager Honey bees. Journal of Invertebrate Pathology. DOI: 10.1016/j.jip.2007.06.002
Higes, M., Martín-Hernández, R., & Meana, A. 2010. Nosema ceranae in Europe: An Emergent Type C Nosemosis. Apidologie, DOI: 10.1051/apido/2010019
Jain SA, de Jesus FT, Marchioro GM, Araujo ED. 2013. Extraction of DNA from honey and its amplification by PCR for botanical identification. Food Science and Technology 33 (4): 753-756
Maharani SMPP. 2017. Deteksi dan Identifikasi Morfologi Nosema apis pada Apis mellifera di Peternakan Istana Lebah Gringsing Batang. Universitas Gadjah Mada
Martín-Hernández R, Meana A, Prieto L, Salvador AM, Garrido-Bailón E, Higes M. 2007. Outcome of Colonization of Apis mellifera by Nosema ceranae. Applied and environmental microbiology. DOI: 10.1128/AEM.00270-07
Michener, CD. 2007. The Bees of the World. 2nd edition. Johns Hopkins University Press, Baltimore
Nizar H, Alaa A, Noureddine A, Fares K, Quddomi S. 2015. Diagnosis of Paenibacillus larvae from Honeybees in Jordan According to Microbiological and Chemicals Techniques. Asian Journal of Animal Sciences. DOI: 10.3923/ajas.2015
Nuraini N, Purwanto H. 2021. Morphology, morphometrics, and molecular characteristics of Apis cerana and Apis nigrocincta from Central Sulawesi, Indonesia. Jurnal Biologi Tropis. DOI: 10.29303/jbt.v21i2.2614
Pacini A, Mira A, Molineri A, Giacobino A, Bulacio CN, Aignasse A, Zago L, Izaguirre M, Merke J, Orellano E, Bertozzi E, Pietronave H, Russo R, Scannapieco A, Lanzavecchia S, Schnittger L, Signorini M. 2016. Distribution and prevalence of Nosema apis and N. ceranae in temperate and subtropical eco-regions of Argentina. Journal of Invertebrate Pathology. DOI:10.1016/j.jip.2016.11.002
Paudel YP, Mackereth R, Hanley R, Qin W. 2015. Honey Bees (Apis mellifera L.) and Pollination Issues: Current Status, Impacts and Potential Drivers of Decline. Journal of Agricultural Science. DOI:10.5539/jas.v7n6p93
Rachmawati RD, Agus A, Umami N, Agussalim, Purwanto H. 2022. Diversity, distribution, and nest characteristics of stingless bees (Hymenoptera: Meliponini) in Baluran National Park, East Java, Indonesia. Biodiversitas. DOI: 10.13057/biodiv/d230805
Ribani A, Utzeri VJ, Taurisano V, Fontanesi L. 2020. Honey as a Source of Environmental DNA for the Detection and Monitoring of Honey Bee Pathogens and Parasites. Veterinary Sciences. DOI:10.3390/vetsci7030113
Rice, R. 2001. Nosema diseases in honey bees. Genetic Variation and Control Rural Industries Research and Development Corporation, Kingston
Rivière MP, Ribière M, Chauzat MP. 2013. Recent Molecular Biology Methods for Foulbrood and Nosemosis Diagnosis. Revue scientifique et technique (International Office of Epizootics). DOI: 10.20506/rst.32.2.2207
Salkova D, Shumkova R, Balkanska R, Palova N, Neov B, Radoslav G, Hristov P. 2018. Molecular Detection of Nosema spp. in Honey in Bulgaria. Veterinary Sciences. DOI: 10.3390/vetsci9010010
Snowdon JA, Cliver DO. 1996. Microorganism in honey. International Journal of Food Microbiology 31: 1-26
Soares S, Amaral JS, Oliveira MBPP, Mafra I. 2015. Improving DNA isolation from honey for the botanical origin identification. Food Control. DOI:10.1016/j.foodcont.2014.02.035
Stackebrandt E, Goebel BM. 1994. Taxonomic Note: A Place for DNA-DNA Reassociation and 16s rRNA Sequence Analysis in the Present Species Definition in Bacteriology. International Journal Of Systematic Bacteriology 44 (4): 846-849
Theisen-Jones H, Bienefeld K. 2016. The asian honey bee (Apis cerana) is significantly in decline. Bee World. DOI: 10.1080/0005772X.2017.1284973
Thummajitsakul S, Silprasit K, Klinbunga S, Sittipraneed S. 2013. The partial mitochondrial sequence of the Old World stingless bee, Tetragonula pagdeni. Journal of Genetics 92 (2): 299-304
Wei W, Ho WC, Behringer MG, Miller SF, Bcharah G, Lynch M. 2022. Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nature Communication. DOI: 10.1038/s41467-022-32353-6
Zepner L, Karrasch P, Wiemann F, Bernard W. 2020. ClimateCharts.net – an interactive climate analysis web platform, International Journal of Digital Earth. DOI: 10.1080/17538947.2020.1829112

Most read articles by the same author(s)