Phytochemical analysis of ethanolic Psidium guajava leaves extract using GC-MS and LC-MS

##plugins.themes.bootstrap3.article.main##

RISA NURSANTY
KHAIRUL NAIM BIN MD PADZIL
NUR ISTI’ANAH BINTI RAMLI
NOR AINY MAHYUDIN
AHMAD HANIFF BIN JAAFAR
YAYA RUKAYADI

Abstract


Abstract. Nursanty R, Padzil KNBM, Ramli NIB, Mahyudin NA, Jaafar AHB, Rukayadi Y2023Phytochemical analysis of ethanolic Psidium guajava leaves extract using GC-MS and LC-MSBiodiversitas 242723-2732Psidium guajava L. is well known as guava and has been used traditionally as a medicinal plant for a variety of ailments all over the world, especially in infusions and decoctions for oral and topical use. Every part of this plant has been used for treating stomachache and diarrhea in many countries. Other reported uses include dermatitis, sores, epilepsy, and wounds.Medicinal plants have an important role in complementary and alternative medicine because they produce various natural compounds with high therapeutic properties. Many researchers report that the major chemical composition of this plant includes tannins, phenols, flavonoids, saponins, carbohydrates, alkaloids, sterols, terpenoids, and phenolic compounds. The aim of this study is to identify the volatile and non-volatile compounds in ethanolic P. guajava leaves extract. This study aimed to identify phytochemical compounds in P. guajava leaves extract. The main volatile compounds identified using GC-MS were pyrogallol, ?-copaene, caryophyllene, aromadendrene, ?-humulene, alloaromadendrene, ?-muurolene, ?-selinene, ?-selinene, ?-muurolene, ?-bisabolene, ?-bisabolene, (-) globulol, caryophyllene oxide, ?-muurolol, and epiglobulol. Based on LC-MS analysis, a number of non-volatile compounds such as flavonoids; apigenin 7-?-?-D-glucuronopyranoside, quercetin, luteolin 7-O-glucuronide, naringenin 4?-O-glucopyranoside, and myrecitin along with phenolic derivatives such as quinic acid, catechin, and epigallocatechin (4?,8)-gallocatechin were tentatively identified.


##plugins.themes.bootstrap3.article.details##

References
Abu-Lafi S, Rayan M, Masalha M., Abu-Farich B, Al-Jaas H, Abu-Lafi M, Rayan A. 2019. Phytochemical composition and biological activities of wild Scolymus maculatus L. Medicines, 6(2): 53. DOI: 10.3390/medicines6020053.
Ampadu GA, Mensah JO, Darko G, Borquayen LS. 2022. Essential oils from the fruits and leaves of Spondias mombin Linn.: Chemical composition, biological activity, and molecular docking study. Evidence-Based Complementary and Alternative Medicine, 2022: 7211015. DOI: 10.1155/2022/7211015.
Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. 2012. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology and Drug Design, 80: 434-439. DOI: 10.1111/j.1747-0285.2012.01418. x.
Arunmathi C, Malarvili T. 2017. Analysis of bioactive compounds in methanol extract of Aplotaxis auriculata rhizome using GC-MS. Journal of Pharmacognosy and Phytochemistry, 6(3): 243-247.
Ashraf A, Sarfraz RA, Rashid MA, Mahmood A, Shahid M, Noor N. 2016. Chemical composition, antioxidant, antitumor, anticancer and cytotoxic effects of Psidium guajava leaf extracts. Pharmaceutical Biology, 54(10): 1971-1981. DOI: 10.3109/13880209.2015.1137604.
Berhanu G, Atalel D, Kandi V. 2020. A review of the medicinal and antimicrobial properties of Carissa spinarum L. American Journal of Biomedical Research, 8(2): 54-58. DOI:10.12691/ajbr-8-2-5.
Borah A, Pandey SK, Haldar S, Lal M. 2019. Chemical composition of leaf essential oil of Psidium guajava L. from North East India. Journal of Essential Oil Bearing Plants, 22 (1): 248-253. DOI:10.1080/0972060X.2019.1574213.
Brigelius-Flohe R. 2006. Bioactivity of vitamin E. Nutrition Research Reviews, 19: 174-186. DOI: 10.1017/S0954422407202938.
Brusotti G, Cesari I, Dentamaro A, Caccialanza G. 2014. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. Journal of Pharmaceutical, 87: 218- 228. DOI: 10.1016/j.jpba.2013.03.007.
Buchmann D, Schultze D, Borchardt J, Böttcher I, Schaufler K, Guenther S. 2022. Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavoneand genistein combined with antibiotics against ESKAPE pathogens. Journal of Applied Microbiology, 132(2): 949- 963. DOI: 10.1111/jam.15253.
Carranza MSS, Linis VC, Ragasa CY, Tan MCS. 2019. Chemical constituents and antioxidant potentials of seven Devi RB, Barkath TN, Vijayaraghavan P, Rejiniemon TS. 2018. GC-MS analysis of phytochemical from Psidium guajava Linn. leaf extract and their Invitro antimicrobial activities. International Journal of Pharmacy and Biological Sciences, 8(1): 583-589.
Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, Laurent PL, Antoniolli AR, Quintans JSS, Quintans-Júnior LJ. 2020 Phytol, a chlorophyll component, produces antihyperalgesic, anti-inflammatory, and antiarthritic effects: Possible NF?B pathway involvement and reduced levels of the proinflammatory cytokines TNF-? and IL-6. Journal Natural Product, 83(4): 1107-1117. DOI: 10.1021/acs.jnatprod.9b01116
Chan, W.K., Tan, L.T.H., Chan, K.G., Lee, L.H., and Goh, B.H. (2016). Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules, 21: 529. DOI: 10.3390/molecules21050529.
Chang CH, Hsieh CL, Wang HE, Peng CC, Chyau CC Peng RY. 2013. Unique bioactive polyphenolic profile of guava (Psidium guajava) budding leaf tea is related to plant biochemistry of budding leaves in early dawn. Journal of the Science of Food and Agriculture, 4(11): 944- 954. DOI: 10.1002/jsfa.5832. E
Chen C, Zhou J, Ji C. 2010. Quercetin: A potential drug to reverse multidrug resistance. Life Sciences, 87(11 – 12): 333-338. DOI: 10.1016/j.lfs.2010.07.004
Chen-Xing Z, Mi Z, He Jing H, Ya-Fang D, Bao-Cai L. 2014. Chemical composition and antioxidant activity of the essential oil from the flowers of Artemisia austro-yunnanensis. Journal of Chemical and Pharmaceutical Research, 6(7):1583-1587.
Costa MD, Cruz AIC, Ferreira, MA, Bispo ASD, Paulo RR, Costa JA, Araújo FM, Evangelista-Barreto NS. 2023. Brown propolis bioactive compounds as a natural antimicrobial in alginate films applied to Piper nigrum L. Food Technology Ciência Rural, 53(5). DOI: 10.1590/0103-8478cr20210805
Damasceno CSB, de Oliveira LF, Szabo EM, Souza AM, Dias JFG, Miguel MD, Miguel OG. 2018. Chemical composition, antioxidant and biological activity of Ocotea bicolor Vattimo-Gil (Lauraceae) essential oil. Brazilian Journal of Pharmaceutical Sciences, 53(4): e17298. DOI: 10.1590/s2175-97902017000417298 A.
Daoutidou M, Plessas S, Alexopoulos A, Mantzourani I. 2021. Assessment of antimicrobial activity of pomegranate, cranberry, and black chokeberry extracts against foodborne pathogens. Foods, 10(3): 1-19. DOI: 10.3390/foods10030486.
Farhadi F, Khamenh B, Iranshahi M, Iranshahy M. 2018. Antibacterial activity of flavonoids and their structure-activity relationship: an update review. Phytotherapy Research, 33(1): 13-40. DOI: 10.1002/ptr.6208.
Fu J, Gao Y, Xing X. 2022. Preliminary study on phytochemical constituents and biological activities of essential oil from Myriactis nepalensis Less. Molecules, 27(14): 4631. DOI: 10.3390/molecules27144631.
García JI, Salvatella L, Pires E, Fraile JM, Mayoral JA. 2014. Addition of ketocarbenes to alkenes, alkynes, and aromatic systems. In: Knockel P (eds) Comprehensive Organic Synthesis. Elsevier, Amsterdam.
G?d?k B. 2021. Antioxidant antimicrobial activities and fatty acid compositions of wild Berberis spp. by different techniques combined with chemometrics (PCA and HCA). Molecules, 26(24): 7448. DOI: 10.3390/molecules26247448.
Gooré SG, Ouattara ZA, Yapi AT, Békro YA, Bighelli A, Paoli M, Tomi F. (2017). Chemical composition of the leaf oil of Artabotrys jollyanus from Côte d’Ivoire. Brazilian Journal of Pharmacognosy, 27: 414- 418. DOI: 10.1016/j.bjp.2017.04.001.
Gordon NC, Wareham DD. 2010. Antimicrobial activity of the green tea polyphenol (?)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia. International Journal of Antimicrobial Agents, 3(2): 129- 131. DOI: 10.1016/j.ijantimicag.2010.03.025.
Gupta S, Variyar PS. 2016. Nanoencapsulation of essential oils for sustained release: application as therapeutics and antimicrobials. In: Grumezescu A (eds) Nanotechnology in the Agri-Food Industry Volume 2. Elsevier, Amsterdam.
Graf M, Stappen I. 2022. Beyond the bark: An overview of the chemistry and biological activities of selected bark essential oils. Molecules, 27: 7295. DOI: 10.3390/molecules27217295.
Hostetler GL, Ralston RA, Schwartz SJ. 2017. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition, 8(3): 423-435. DOI: 10.3945/an.116.012948.
Jaradat N, Al-Lahham S, Abualhasan MN, Bakri A, Zaide H, Hammad J, Speih R. 2018. Chemical constituents, antioxidant, cyclooxygenase inhibitor, and cytotoxic activities of Teucrium pruinosum Boiss. Essential oil. BioMedicinal of Research International, 2018: 9-13. DOI: 10.1155/2018/4034689.
Khan S, Richa KH, Jhamta R. 2019. Evaluation of antioxidant potential and phytochemical characterization using GCMS analysis of bioactive compounds of Achillea filipendulina (L.) Leaves. Journal of Pharmacognosy and Phytochemistry,8(3): 258-265.
Kiehne A, Engelhardt UH. 1996. Thermospray-LC-MS analysis of various groups of polyphenols in tea: catechins, flavonol O-glycosides, and flavone C-glycosides. Z Lebensm Unters Forsch, 202: 45-54.
Legault J, Pichette A. 2007. Potentiating effect of ??caryophyllene on anticancer activity of ??humulene, isocaryophyllene and paclitaxel. Journal of Pharmacy and Pharmacology, 59(12): 1643-1647. DOI: 10.1211/jpp.59.12.0005.
Lima BG, Tietbohl LAC, Fernandes CP, Cruz RAS, Botas GDS, Santos MG, Silva-Filho MV, Rocha L. 2011. Chemical composition of essential oils and anticholinesterasic activity of Eugenia sulcata Spring ex Mart. Latin American Journal of Pharmacy, 31(1): 152-155.
Liu, Y, Muema FW, Zhang Y, Guo M. 2020. Acyl quinic acid derivatives screened out from Carissa spinarum by SOD-affinity ultrafiltration LC–MS and their antioxidative and hepatoprotective activities. Antioxidants, 10(8): 1302. DOI: 10.3390/antiox10081302.
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jayawardhana HHACK, Lee H, Kim Y, Jeon Y. 2022. Clionasterol-rich fraction of Caulerpa racemose against particulate matter-induced skin damage via inhibition of oxidative stress and apoptosis-related signaling pathway. Antioxidants, 11: 1941. DOI: 10.3390/antiox11101941.
Mancini E, De Martino L, Malova H, De Feo V. 2013. Chemical composition and biological activities of the essential oil from Calamintha nepeta plants from the wild in southern Italy. Natural Product Communications, 8(1): 139-142. DOI: 10.1177/1934578X1300800134.
Metwally AM, Omar AA, Harraz FM, Sohafy SM. 2010. Phytochemical investigation and antimicrobial activity of Psidium guajava Linn. leaves. Pharmacognosy Magazine, 6(23): 212-218. DOI: 10.4103/0973-1296.66939.
Naseer S., Hussain S, Naeem N, Pervaiz M, Rahman M. 2018. The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4(32): 1- 8. DOI: 10.1186/s40816-018-0093-8.
Noriega P, Guerrini A, Sacchetti G, Grandini A, Ankuash E, Stefano MS. 2019. Chemical composition and biological activity of five essential oils from the ecuadorian amazon rain forest. Molecules, 24: 1637. DOI: 10.3390/molecules24081637
Oirere, EK, Anusooriya, P, Raj, CA, Gopalakrishnan, VK. 2015. Phytochemical analysis of N-hexane leaf extract of Alpinia purpurata (Vieill.) K. Schum using UV-VIS, FTIR and GC-MS. International Journal of Pharmacy and Pharmaceutical Sciences, 7(8): 387-389.
Paparella A, Shaltiel-Harpaza L, Ibdah M. 2021. ?-Ionone: Its occurrence and biological function and metabolic engineering. Plants, 10(4): 754. DOI: 10.3390/plants10040754.
Palariya D, Singh A, Dhami A, Ravendra KR, Prakash O, Pant AK, Rishendra KR. 2019. Phytochemical analysis and biological activities of leaves and bark hexane extracts of Premna mucronata Roxb. collected from Kumaun hills of Uttarakhand. International Journal of Herbal Medicine, 7(5): 35-44.
Ravi K, Divyashree P. 2014. Psidium guajava: A review on its potential as an adjunct in treating periodontal disease. Pharmacognosy Reviews, 8(16): 96-99. DOI: 10.4103/0973-7847.134233
Saed NM, El-Demerdash E, Abdel-Rahman HM, Algandaby MM, Al-Abbasi FA, Abdel-Naim AB. 2021. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicology and Applied Pharmacology, 264(1): 84-93. DOI: 10.1016/j.taap.2012.07.020
Sanda, K.A., Grema, H.A., Geidam, Y.A. and Bukar-Kolo, Y.M. (2011). Pharmacological aspects of Psidium guajava: An update. International Journal of Pharmacology, 7(3): 316 – 324. DOI: 10.3923/ijp.2011.316.324
Satyal P. 2015. Development of GC-MS database of essential oil components by the analysis of natural essential oils and synthetic compounds and discovery of biologically active. (Dissertation). University of Alabama in Huntsville.
Salehi, B., Venditti, A., Sharifi-Rad, M., Kregiel, D., Sharifi-Rad, J., Durazzo, A., Lucarini, M., Santini, A., Souto, E.B., Novellino, E., Antolak, H., Azzini, E., Setzer, W.N., and Martins, N. (2019). The therapeutic potential of apigenin. International Journal of Molecular Sciences, 20(6): 1305. DOI: 10.3390/ijms20061305.
Seol GH, Kim KY. 2016. Eucalyptol and its role in chronic diseases. Drug discovery from mother nature. In: Crusio WE, Dong H, Radeke HHN, Steinlein O, Xiao J (eds) Part of the Advances in Experimental Medicine and Biology. Springer, New York.
Siswadi S, Saragih GS. 2021. Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. AIP Conference Proceedings, 2353. DOI: 10.1063/5.0053057.
Soliman FM, Fathy MM, Salama MM, Saber FR. 2016. Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves. Bulletin of Faculty of Pharmacy, 54: 219-225. DOI: 10.1016/j.bfopcu.2016.06.003 1110-0931
Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR. 2017. GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Complementary and Alternative Medicine, 2017: 1517683. DOI: 10.1155/2017/1517683.
Thenmozhi S, Rajan S. 2015. GC-MS analysis of bioactive compounds in Psidium guajava leaves. Journal of Pharmacognosy and Phytochemistry, 3(5): 162-166.
Trevizan LNF, do Nascimento KF, Santos JA, Kassuya CAL, Cardoso CAL, do Carmo Vieira M, Formagio ASN. 2016. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. Journal of ethnopharmacology, 192: 510-515. DOI: 10.1016/j.jep.2016.08.053.
Rhetso T, Shubharani R, Roopa MS, Sivaram V. 2020. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Future Journal of Pharmaceutical Sciences, 6:102. DOI: 10.1186/s43094-020-00100-7.
Rukayadi, Y, Shim JS, Hwang, JK. 2008. Screening of Thai medicinal plants for anticandidal activity. Mycoses. 51: 308-312. DOI: 10.1111/j.1439-0507.2008. 01497.x
Wang J, Zhao J, Liu H, Zhou L, Liu Z, Wang J, Han J, Zhu Yu Z, Yang F. 2010. Chemical analysis and biological activity of the essential oils of two Valerianaceous species from China: Nardostachys chinensis and Valeriana officinalis. Molecules, 15: 6411 – 6422. DOI: 10.3390/molecules15096411.
Wu M, Brown AC. 2021. Applications of catechins in the treatment of bacterial Infections. Pathogens, 10(5): 546. DOI: 10.3390/pathogens10050546
Wu C. 1998. Structural and Synthetic Studies of Potential Antitumor Natural Products. (Dissertation). Virginia Polytechnic Institution and State University, United State of America.
Zhang L, Wang Y, Xu M. Hu X. 2017. Chemical composition and antibacterial activity of the essential oil from Chinese wild Ledum palustre L. on Vibrio parahaemolyticus. International Journal of Food and Nutritional Science, 4(1): 8-12. DOI: 10.15436/2377-0619.17.1270