Epiphytic and epigeal lichens as bioindicators of air pollution in the Burabay National Park, Kazakhstan

##plugins.themes.bootstrap3.article.main##

ZNANYLKHAN BUKABAYEVA
SARDARBEK ABIYEV
BATIYASH SILYBAYEVA
ULBALA ASSANOVA
ANARGUL SHARIPKHANOVA
BALNUR SAGDATKYZY

Abstract

Abstract. Bukabayeva Z, Abiyev S, Silybayeva B, Assanova U, Sharipkhanova A, Sagdatkyzy B. 2023. Epiphytic and epigeal lichens as bioindicators of air pollution in the Burabay National Park, Kazakhstan. Biodiversitas 24: 2701-2709. Lichens are recognized as a symbiotic association between a fungus (mycobiont) and a chlorophyll-containing partner (photobiont). Because lichens receive all their nutrients from the atmosphere, they are very sensitive to air quality and can be used as bioindicators of pollution by heavy metals, organic compounds and radioactive elements in the air. This study aimed to evaluate the potential of lichens as bioindicators of the heavy metal content in the air in the Burabay National Park, northern Kazakhstan. In the period from 2018 to 2022, we studied the floristic composition of lichens in the national park. To inform air pollution level, we determined the quantitative characteristics and projective cover of an epiphytic lichen Evernia prunastri (L.) Ach. at different heights above ground level, and the heavy-metal content in an epigeal lichen Cladonia alpestris (L.) Rabenh (Syn. Cladonia stellaris (Opiz) Pouzar & V?zda) at different distances from the road edge. We identified 56 species of lichen belonging to 23 genera and 16 families on the roadsides or in the nearby forest. We found that the average number of individuals of E. prunastri decreased as the tree trunk height increased. The largest number of individuals (11.3) was observed at a height of 60 cm, and the smallest (2.5), at a height of 150 cm. The analysis of C. alpestris samples taken at different distances (50, 100, 150, 200 m) from the roadside showed that the concentrations of Pb, Cr, Cd, As, Ga, V, and ?s were high, and for all the elements studied, except for Mn and Be, exceeded Maximum Allowable Concentration. Our study demonstrates that E. prunastri and C. alpestris are sensitive to air pollution from road traffic and can be used as biomonitors of heavy metal pollution in the study area. Because of the ever-increasing anthropogenic pressure on the vegetation of the Burabay National Park, we recommend further research and monitoring of its lichen biota.

##plugins.themes.bootstrap3.article.details##

References
Abas, A., Sulaiman, N., Adnan, N.R., Aziz, S.A., Nawang, W.N.S.W., 2019. Using lichen (Dirinaria sp.) as bio-indicator for airborne heavy metal at selected industrial areas in Malaysia. EnvironmentAsia 12 (3), 85–90.
Adi Yildiz, A., John, V., & Yurdakulol, E. 2002. Lichens from the Cangal Mountains (Sinop, Turkey). Cryptogamie mycologie , vol.23, no.1, 81-88.
Aptroot A. Lichens as an indicator of climate and global change. Letcher TM ed. Climate Change: Observed impacts on Planet Earth. Oxford, Elsevier, 2009. 444.
Biazrov, L. G., & Pelgunova, L. A. (2015). Composition and proportion of elements on the surface of crustose lichens from the experimental field of the former Semipalatinsk test site and from the town of Kurchatov (Republic of Kazakhstan). Arid Ecosystems, 5, 95-101.
Boonpeng, C., Sriviboon, C., Polyiam, W., Sangiamdee, D., Watthana, S., Boonpragob, K., 2018. Assessing atmospheric pollution in a petrochemical industrial district using a lichen-air quality index (LiAQI). Ecol. Indic. 95, 589–594. https://doi.org/10.1016/j.ecolind.2018.08.012.
Byazrov L.G. Lichens in ecological monitoring. Moscow: Nauchny Mir, 2002. 336. [Russian].
Conti, M., Cecchetti, G., 2001. Biological monitoring: lichens as bioindicators of air pollution assessment — a review. Environ. Pollut. 114 (3), 471–492. https://doi.org/10.1016/s0269-7491(00)00224-4.
Die Flechten Baden-Württembergs. Wirth V. Stuttgart: Ulmer, 1995. Vol. 1-2. 1007 s. 15. Prinzing A.I. Wind-acclimated thallus morphogenesis in a lichen (Evernia prunastri, Parmeliaceae) probably favored by grazing disturbances // Amer. J. Bot. 1999. Vol. 86, ? 2. 173-183.
Firdous, S. S., Naz, S., Shaheen, H., & Dar, M. U. E. I. (2017). Lichens as bioindicators of air pollution from vehicular emissions in District Poonch, Azad Jammu and Kashmir, Pakistan. Pak. J. Bot, 49(5), 1801-1810.
Golubkova N.S. Field guide of lichens of the middle part of the European part of the USSR. L.: Nauka, 1966. 200-255. [Russian].
Gómez-Guzmán, J. M., López-Gutiérrez, J. M., Pinto, A. R., Holm, E., & García-León, M. (2010). Analysis of 129I in lichens by accelerator mass spectrometry through a microwave-based sample preparation method. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268(7-8), 1171-1174. doi:10.1016/j.nimb.2009.10.126
Hauck M., Hofmann E., Schmull M. Site factors determining epiphytic lichen distribution in a dieback-affected spruce-fir forest on Whiteface Mountain, New York: microclimate // Annales Botanici Fennici. 2006. Vol. 43. 1–12.
Insarov G.E. Lichens in the context of global climate change // Problems of ecological monitoring and modeling of ecosystems. ?.18. St. Petersburg: Gidrometeoizdat, 2002. 109–141. [Russian].
Kubentayev, S. A., Izbastina, K. S., Alibekov, D. T., Zhumagul, M. Zh., Idrisova, J. T., & Borodulina, O. V. 2022. Ecological and phytocenotic structure of cenopopopulations of rare plants of the Burabay National Park. KazNU Bulletin Biological series, 93(4).110.
Kuldeep, S., & Prodyut, B. (2015). Lichen as a bio-indicator tool for assessment of climate and air pollution vulnerability. Int Res J Environ Sci, 4, 107-117.
Kurmanbaeva, A. S., Khusainov, A. T., & Zhumai, E. (2019). Ecological condition of the lake" burabai" of the state national nature park" burabai". Science News of Kazakhstan, (3), 171-178.
López L.G.C., Medina E.A.S., Peña A.M. Effects of microclimate on species diversity and functional traits of corticolous lichens in the Popayan Botanical Garden (Cauca, Colombia) // Cryptogamie. Mycologie. 2016. Vol. 37, ? 2. 205–215.
Loppi, S. (2019). May the diversity of epiphytic lichens be used in environmental forensics?. Diversity, 11(3), 36.
Makryi T.V. Ecology of Lichens // Lichen Flora of Russia: Biology, Ecology, Diversity and Methods of Lichen Studies. M., SPb.: KMK, 2014. ?. 187-203. [Russian]
Monaci, F., Ancora, S., Paoli, L., Loppi, S., & Wania, F. (2022). Lichen transplants as indicators of gaseous elemental mercury concentrations. Environmental Pollution, 313, 120189.
Nimis, P. L., & Wolseley, P. A. (Eds.). (2002). Monitoring with lichens-monitoring lichens (Vol. 7). Springer Science & Business Media.
Opekunova, M. G., & Gizetdinova, M. Yu. 2014. The use of lichens as bioindicators of environmental pollution. Bulletin of St. Petersburg University. Earth Sciences, (1), 79-94. [Russian].
Opekunova, M. G., Opekunov, A. Y., Kukushkin, S. Y., & Arestova, I. Y. (2018). Evaluation of environmental transformation in areas of hydrocarbon deposits in the north of western siberia. Contemporary Problems of Ecology, 11(1), 99-110. doi:10.1134/S1995425518010109. [Russian].
Pchelkin, A. V., & Kukhta, A. E. (2019). Background monitoring of epiphytic lichens in the North Ossetian nature reserve. In Modern Problems of Hydrometeorology and Sustainable Development of the Russian Federation 400-401. [Russian].
Pisani T., Paoli L., Gaggi C., Pirintsos S., Loppi S. Effects of high temperature on epiphytic lichens: Issues for consideration in a changing climate scenario // Plant Biosystems. 2007. Vol. 141, ? 2. P. 164–169.
Prinzing A.I. Wind-acclimated thallus morphogenesis in a lichen (Evernia prunastri, Parmeliaceae) probably favored by grazing disturbances // Amer. J. Bot. 1999. Vol. 86, ? 2. P. 173-183.
Puhakainen, M., Rahola, T., Heikkinen, T., & Illukka, E. (2007). 134Cs and 137Cs in lichen (cladonia stellaris) in southern finland. Boreal Environment Research, 12(1), 29-35. Retrieved from www.scopus.com
Rai, H., & Gupta, R. K. (2022). Lichenized fungi, a primary bioindicator/biomonitor for bio-mitigation of excessive ambient air nitrogen deposition worldwide. In Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1 (pp. 267-301). Elsevier.
Ramdani, M., Adjiri, F., & Lograda, T. (2019). Relationship between lichen diversity and air quality in urban region in Bourdj Bou Arriridj, Algeria. Biodiversitas Journal of Biological Diversity, 20(8).
Soliman, M., Potlakayala, S., Millar, D., Weeden, H., Bogush, D., Deguchi, M., & Rudrabhatla, S. (2019). Comparing a review of heavy metal uptake and their toxicity on plant and human health. International Journal of Plant, Animal and Environmental Sciences, 9(3), 182-189.
Suetina Y.G. Distribution of lichen follicles Pseudevernia furfuracea (L.) Zopf on the trunk of Scots pine in different types of pine forests with different position in the terrain // Samara Scientific Bulletin. 2020. ?. 9, ? 3. ?. 137-141. DOI: 10.17816/snv202093122
Tolpysheva, T. Yu. (2010). Keys for determining the genera of lichens. The thallus is bushy. Bulletin of the Moscow Society of Naturalists. Biological Division, 115(6), 60-63. [Russian].
Tonneijck, A. E. G., & Posthumus, A. C. 1987. Use of indicator plants for biological monitoring of effects of air pollution: the Dutch approach.