The dynamics of Chlorella spp. abundance and its relationship with water quality parameters in intensive shrimp ponds

##plugins.themes.bootstrap3.article.main##

HAYATI SOEPRAPTO
HERI ARIADI
UBAD BADRUDIN

Abstract

Abstract. Soeprapto H, Ariadi H, Badrudin U. 2023. The dynamics of Chlorella spp. abundance and its relationship with water quality parameters in intensive shrimp ponds. Biodiversitas 24: 2919-2926. Chlorella spp. is a plankton genus belonging to the phylum Chlorophyta and is commonly found in the shrimp farming ponds. This plankton might serve as natural feed especially for the post-larvae stage shrimps. This study aims to investigate the dynamics of Chlorella spp. abundance and its correlation with the N:P ratio in the intensively managed shrimp ponds. The study was conducted using a causal ex-post facto design with data collection through purposive sampling. The results showed that the plankton abundance in the observed ponds was moderate consisted of 4 class and 7 genera. The dominant genus was Chroococcus spp. and Chlorella spp. with abundance ranging from 2.50E+05 to 2.60E+05 cells/mL. Plankton abundance correlated with water quality conditions, including pH of 7.9, salinity of 19-20‰, temperature of 28.50-28.75°C, dissolved oxygen of 5.12-5.39 mg/L, nitrite of 0.035-0.072 mg/L, phosphate of 0.011-0.025 mg/L, organic matter of 95.77-102.32 mg/L, and alkalinity of 125-130 mg/L. There was also correlation between the increase in plankton biomass and nutrient solubility. The abundance of Chlorella spp. was negatively correlated with the N:P ratio of the water in the ponds. Based on dynamic model analysis, the most ideal N:P ratio is 1:20 from several simulations of 1:10, 1:20, 1:30, and 1:40. The dynamics of Chlorella spp. abundance followed an oscillatory pattern from the beginning of cultivation to harvest with the most ideal N:P ratio of 1:20. This understanding is important for making environmental engineering concepts in pond aquatic ecosystems.

##plugins.themes.bootstrap3.article.details##

References
Accoroni S, Glibert PM, Pichierri S, Romagnoli T, Marini M, Totti C. 2015. A conceptual model of annual Ostreopsis cf. ovata blooms in the northern Adriatic Sea based on the synergic effects of hydrodynamics, temperature, and the N:P ratio of water column nutrients. Harmful Algae 45: 14-25.
Aini M, dan Parmi H.J. 2022. Analisis Tingkat Pencemaran Tambak Udang di Sekitar Perairan Laut Desa Padak Guar Kecamatan Sambelia Kabupaten Lombok Timur. AQUACOASTMARINE: J.Aquat.Fish.Sci 1(2): 67-75.
Alam M.I, Debrot A.O, Ahmed M.U, Ahsan M.N, Verdegem M.C.J. 2021. Synergistic effects of mangrove leaf litter and supplemental feed on water quality, growth and survival of shrimp (Penaeus monodon, Fabricius, 1798) post larvae. Aquaculture 545: 737237.
Angela D, Arbi S, Natrah F.M.I, Widanarni W, Pande G.S.J, Ekasari J. 2021. Evaluation of Chlorella sp. and Ankistrodesmus sp. addition on biofloc system performance in giant prawn culture. Aquaculture Research, 1-11.
APHA. 1998. A. P. H. A. : Standard methods for the examination of water and wastewater. American Physical Education Review, 24(9):481–486.
Aprilliyanti S, Soeprobowati T.R, Yulianto B. 2016. Hubungan Kemelimpahan Chlorella sp Dengan Kualitas Lingkungan Perairan Pada Skala Semi Masal di BBBPBAP Jepara. Jurnal Ilmu Lingkungan 14: 77-81.
Ariadi H. 2019. Konsep Pengelolaan Budidaya Udang Vannamei (Litopenaeus vannamei) Pola Intensif Berdasarkan Tingkat Konsumsi Oksigen Terlarut. Universitas Brawijaya, Malang.
Ariadi H. 2020. Oksigen Terlarut dan Siklus Ilmiah Pada Tambak Intensif. Guepedia, Bogor.
Ariadi H, dan Mujtahidah T. 2022. Analisis Permodelan Dinamis Kelimpahan Bakteri Vibrio sp. Pada Budidaya Udang Vaname, Litopenaeus vannamei. Jurnal Riset Akuakultur 16(4): 255-262.
Ariadi H, dan Puspitasari M.N. 2021. Perbandingan Pola Kelayakan Ekologis Dan Finansial Usaha Pada Kegiatan Budidaya Udang Vaname (L. vannamei). Fish Scientiae 11(2): 125-138.
Ariadi H, dan Wafi A. 2020. Water Quality Relationship with FCR Value in Intensive Shrimp Culture of Vannamei (Litopenaeus vannamei). Samakia: Jurnal Ilmu Perikanan 11(1): 44-50.
Ariadi H, Mahmudi M, Fadjar M. 2019. Correlation between density of vibrio bacteria with Oscillatoria sp. abundance on intensive Litopenaeus vannamei shrimp ponds. Research Journal of Life Science 6(2): 114-129.
Ariadi H, Fadjar M, Mahmudi M. 2019. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. Aquaculture, Aquarium, Conservation & Legislation 12(6): 2103-2116.
Ariadi, H., Wafi, A., Madusari, B.D. 2021. Dinamika Oksigen Terlarut (Studi Kasus Pada Budidaya Udang). Penerbit ADAB, Indramayu.
Ariadi H, Wafi A, Musa M, Supriatna. 2021. Keterkaitan Hubungan Parameter Kualitas Air Pada Budidaya Intensif Udang Putih (Litopenaeus vannamei). Samakia: Jurnal Ilmu Perikanan 12(1): 18-28.
Ariadi H, Wafi A, Supriatna, Musa M. 2021. Tingkat difusi oksigen selama periode blind feeding budidaya intensif udang vaname (Litopenaeus vannamei). Rekayasa 14(2): 152-158.
Ariadi H, Khristanto A, Soeprapto H, Kumalasari D, Sihombing J.L. 2022. Plankton and its potential utilization for climate resilient fish culture. Aquaculture, Aquarium, Conservation & Legislation 15(4): 2041-2051.
Ding X, He W, Liu H, Guo X, Zha M, Jiang Z. 2022. Organic matter accumulation in lacustrine shale of the Permian Jimsar Sag, Junggar Basin, NW China. Petroleum Science: 10038.
Dykes K.L, dan Sterman J.D. 2020. Boom and Bust Cycles in Wind Energy Diffusion Due to Inconsistency and Short-term Bias in National Energy Policies. Massachusetts Avenue: 1-26.
Gao B, Liu J, Zhang C, de Waal D.B.V. 2018. Biological stoichiometry of oleaginous microalgal lipid synthesis: The role of N:P supply ratios and growth rate on microalgal elemental and biochemical composition. Algal Research 32: 353-361.
Gonzalez J.J.G, Londono G.A.C, Pardo-Carrasco S.C. 2012. Phytoplankton and periphyton in ponds with Nile tilapia (Oreochromis niloticus) and bocachico (Prochilodus magdalenae) . Rev Colomb Cienc Pecu 25: 603-614.
Guo J, Brugel S, Anderson A, Lau D.C.P. 2022. Spatiotemporal carbon, nitrogen and phosphorus stoichiometry in planktonic food web in a northern coastal area. Estuarine, Coastal and Shelf Science 272: 107903.
Lyu T, Yang W, Cai H, Wang J, Zheng Z, Zhu J. 2021. Phytoplankton community dynamics as a metrics of shrimp healthy farming under intensive cultivation. Aquaculture Reports 21: 100965.
Maliwat G.C.F, Velasquez S.F, Buluran S.M.D, Tayamen M.M, Ragaza J.A. 2021. Growth and immune response of pond-reared giant freshwater prawn Macrobrachium rosenbergii post larvae fed diets containing Chlorella vulgaris. Aquaculture and Fisheries 6(5): 465-470.
Manan H, Zhong J.H, Kasan N.A, Suratman S, Ikhwanuddin M. 2016. Study on carbon sinks by classified biofloc phytoplankton from marine shrimp pond water. AACL Bioflux 9(4): 845-853.
Nadapdap N.S, Perwira I.Y, Ernawati N.M. 2020. Analisis Karbon, Nitrogen dan Total Bakteri pada Substrat Dasar Tambak Udang Vannamei (Litopenaeus vannamei) pada Pertengahan Masa Tanam di Desa Sanggalangit, Buleleng, Bali. Current Trends in Aquatic Science III(1): 97-105.
Negrete-Garcia G, Luo J.Y, Long M.C, Lindsay K, Levy M, Barton A.D. 2022. Plankton energy flows using a global size-structured and trait-based model. Progress in Oceanography 209: 102898.
Ramanan R, Kannan K, Deshkar A, Yadav R, Charabarti T. 2010. Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource Technology 101(8): 2616-2622.
Recknagel F, Zohary T, Rucker J, Orr P.T, Branco C.C, Nixdorf B. 2019. Causal relationships of Raphidiopsis (formerly Cylindrospermopsis) dynamics with water temperature and N:P-ratios: A meta-analysis across lakes with different climates based on inferential modelling. Harmful Algae 84: 222-232.
Reinl K.L, Sterner R.W, Lafrancois B.M, Brovold S. 2020. Fluvial seeding of cyanobacterial blooms in oligotrophic Lake Superior. Harmful Algae 100: 101941.
Sahoo C.R, Maharana S, Mandhata C.P, Bisyohi A.K, Paidesetty S.K, Padhy R.N. 2020. Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi Journal of Biological Sciences 27: 1580-1586.
Santanumurti M.B, Khanza S, Abidin Z, Putri B, Hudaidah S. 2022. The Performance of Microalgae (Nannochloropsis sp., Tetraselmis sp. and Dunaliella sp.) on White Shrimp (Litopenaeus vannamei) Wastewater Cultivation Media. Journal of Aquaculture and Fish Health 11(1): 1-9.
Shaari A.L, Surif M, Latiff F.A, Omar W.M.W, Ahmad M.N. 2011. Monitoring of Water Quality and Microalgae Species Composition of Penaeus monodon Ponds in Pulau Pinang, Malaysia. Tropical Life Sciences Research, 22(1): 51–69, .
Shen H, Fan X, Qiao Y, Jiang G, Wan X, Cheng J, Li H, Dou Y, Li H, Wang L, Shi W, Qin Y, Shen J. 2021. The links among Enterocytozoon hepatopenaei infection, growth retardation and intestinal microbiota in different sized shrimp Penaeus vannamei. Aquaculture Reports 21: 100888.
Tuantet K, Temmink H, Zeeman G, Wijffels R.H, Buisman C.J.N, Janssen M. 2019. Optimization of algae production on urine. Algal Research 44: 101667.
Tulsankar S.S, Cole A.J, Gagnon M.M, Fotedar R. 2021. Temporal variations and pond age effect on plankton communities in semi-intensive freshwater marron (Cherax cainii, Austin and Ryan, 2002) earthen aquaculture ponds in Western Australia. Saudi Journal of Biological Sciences 28: 1392-1400.
Utojo. 2015. Keragaman Plankton dan Kondisi Perairan Tambak Intensif dan Tradisional di Probolinggo Jawa Timur. Biosfera 32(2): 83-97.
Wafi A, dan Ariadi H. 2022. Budidaya Rumput Laut Di Wilayah Pesisir. Penerbit ADAB, Indramayu.
Wafi A, dan Ariadi H. 2022. Estimasi Daya Listrik Untuk Produksi Oksigen Oleh Kincir Air Selama Periode “Blind Feeding” Budidaya Udang Vaname (Litopenaeus vannamei). Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology 18(1): 19-35.
Zhang D, Xu W, Wang F, He J, Chai X. 2022. Carbon dioxide fluxes from mariculture ponds with swimming crabs and shrimps in eastern China: The effect of adding razor clams. Aquaculture Reports 22: 100917