Effect of biophysical conditions on standing and soil carbon storage in various land uses in Gunung Mas, Central Kalimantan, Indonesia

##plugins.themes.bootstrap3.article.main##

PENZA LINDIANI
LETI SUNDAWATI
UJANG SUWARNA

Abstract

Abstract. Lindiani P, Sundawati L, Suwarna U. 2023. Effect of biophysical conditions on standing and soil carbon storage in various land uses in Gunung Mas, Central Kalimantan, Indonesia. Biodiversitas 24: 4493-4502. One of the human activities that accelerates climate change is degradation and deforestation, which can lead to new land use in the form of palm oil plantations and agroforestry. Both of these land uses have the potential to store carbon, which can be optimized if the influencing factors are known. This study aims to estimate the potential for carbon storage in palm oil and agroforestry plantations in Gunung Mas, Central Kalimantan, Indonesia, and to analyze the effect of biophysical conditions such as topography, soil fertility, and stand density on the potential for carbon storage. The research was conducted in palm oil plantations (POP) and agroforestry areas categorized as agroforestry with forestry and palm oil plantation commodities (AG-SS), as well as agroforestry consisting of forestry, palm oil, and fruit crops (AG-SSB). Sample plots were determined through purposive sampling with 30 plots for each land use. The research results show significant differences in aboveground carbon (AGC), soil organic carbon (SOC), and total carbon storage among the three land uses. The largest total AGC was in AG-SS (66.24 ton.ha-1), while the lowest AGC was observed in POP (48.15 ton.ha-1). The greatest SOC was recorded in AG-SSB (2163.21 ton. ha-1), followed by POP (1922.12 ton.ha-1) and AG-SS (1846.72 ton.ha-1). The highest total carbon storage was measured in AG-SSB (2223.36 ton.ha-1), followed by POP (1970.27 ton.ha-1), and the lowest in AG-SS (1912.96 ton.ha-1). Biophysical factors, including topography, soil fertility, and stand density, influenced carbon storage in each land use. Topography and stand density factors significantly influenced AGC, while soil fertility factors significantly affected SOC and total carbon storage in all three land uses.

##plugins.themes.bootstrap3.article.details##

References
Aghili N, Amirkhani M. 2021. SEM-PLS approach to green building. Encyclopedia 1 (2): 472-481. DOI: 10.3390/encyclopedia1020039.
Asari N, Suratman MN, Jaafar J, Khalid MM. 2013. Estimation of above ground biomass for oil palm plantations using allometric equations. 2013 4th International Conference on Biology, Environment and Chemistry, IPCBEE, Phuket, November 2013 58: 110-114. DOI: 10.7763/IPCBEE.2013.V58.22.
Badan Standardisasi Nasional (BSN). 2011. SNI 7722:2011: Pengukuran dan Penghitungan Cadangan Karbon-Pengukuran Lapangan untuk Penaksiran Cadangan Karbon Hutan. Badan Standardisasi Indonesia, Jakarta. [Indonesian]
Bayat M, Bettinger P, Heidari S, Hamidi SK, Jaafari A. 2021. A combination of biotic and abiotic factors and diversity determine productivity in natural deciduous forests. Forests 12 (11): 1450. DOI: 10.3390/f12111450.
Becker J, Pabst H, Mnyonga J, Kuzyakov Y. 2015. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro. Biogeosci Discuss 12: 10031-10057. DOI: 10.5194/bgd-12-10031-2015.
Besar NA, Suardi H, Phua MH, James D, Mokhtar MB, Ahmed MF. 2020. Carbon stock and sequestration potential of an agroforestry system in Sabah, Malaysia. Forest 11 (2): 210. DOI: 10.3390/f11020210.
Brown S. 1997. Estimating Biomass and Biomass Change of Tropical Forests, A Primer. Food and Agriculture Organization of the United Nations, Rome.
Buraka T, Elias E, Lelago A. 2022. Soil organic carbon and its' stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon 8: 2405-8440. DOI: 10.1016/j.heliyon.2022.e10261.
Chimdessa T. 2023. Forest carbon stock variation with altitude in Bolale Natural Forest, Western Ethiopia. Glob Ecol Conserv 45: e02537. DOI: 10.1016/j.gecco.2023.e02537.
Chin WW. 1998. The partial least squares approach for structural equation modelling. In: Marcoulides GA (eds). Modern Methods for Business Research. Lawrence Erlbaum Associate Publisher, Mahwah New Jersey, United States.
Dal Ferro N, Sartori L, Simonetti G, Berti A, Morari F. 2014. Soil macro and microstructure as affected by different tillage systems and their effects on maize root growth. Soil Tillage Res 140: 55-65. DOI: 10.1016/j.still.2014.02.003.
Darmawan AH, Ariyanto DP, Basuki TM, Syamsiyah J, Dewi WS. 2022. Biomass accumulation and carbon sequestration potential in varying tree species, ages, and densities in Gunung Bromo Education Forest, Central Java, Indonesia. Biodiversitas 10 (23): 5093-5100. DOI: 10.13057/biodiv/d231016.
Dash G, Paul J. 2021. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol Forecast Soc Change 173: 121092. DOI: 10.1016/j.techfore.2021.121092.
Giweta M. 2020. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J Ecol Environ 44: 11. DOI: 10.1186/s41610-020-0151-2.
Goenawan YA, Subandriyo. 2023. Effect of profitability and solvency on stock prices with dividend policy as an intervening variable. Aptisi Trans Manag 7 (2): 143-151. DOI: 10.33050/atm.v7i2.1894.
Gogoi A, Sahoo UK. 2018. Impact of anthropogenic disturbance on species diversity and vegetation structure of a lowland tropical rainforest of Eastern Himalaya, India. J Mt Sci 15 (11): 2453-2465. DOI: 10.1007/s11629-017-4713-4.
Hairiah K, Ekadinata A, Sari RR, Rahayu S. 2011. Pengukuran Cadangan Karbon dari Tingkat Lahan ke Bentang Lahan. Ed ke-2. World Agroforestry Centre-ICRAF, Bogor. [Indonesian]
Haris AO, Zubair H, Syaiful SA. 2021. Land suitability evaluation of crops that form agroforestry in tanralili district maros regency. IOP Conf Ser: Earth Environ Sci 637: 012023. DOI: 10.1088/1755-1315/637/1/012023.
Hartoyo AP, Khairunnisa S, Pamoengkas P, Solikhin A, Supriyanto, Siregar IZ, Prasetyo LB, Istomo. 2022. Estimating carbon stocks of three traditional agroforestry systems and their relationships with tree diversity and stand density. Biodiversitas 23 (12): 6137-6146. DOI: 10.13057/biodiv/d231207.
Houghton RA, House JI, Pongratz J, van der Werf GR, Defries RS, Hansen MC, Le Quéré C, Ramankutty N. 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9: 5125-5142. DOI: 10.5194/bg-9-5125-2012.
Intergovernmental Panel on Climate Change (IPCC). 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. DOI: 10.1017/9781009157896.
Javed A, Ali E, Afzal KB, Osman A, Riaz S. 2022. Soil fertility: Factors affecting soil fertility, and biodiversity responsible for soil fertility. Intl J Plant Anim Environ Sci 12 (1): 021-033. DOI: 10.26502/ijpaes.202129.
Joshi VC, Negi VS, Bisht D, Sundriyal RC, Arya D. 2021. Tree biomass and carbon stock assessment of subtropical and temperate forests in the Central Himalaya, India. Trees For People 6: 100147. DOI: 10.1016/j.tfp.2021.100147.
Karuru SS, Rasyid B, Millang S. 2021. Carbon stock estimation on some land cover: Secondary forest, agroforestry, palm oil plantation and paddy fields. IOP Conf Ser: Earth Environ Sci 637: 012056. DOI:10.1088/1755-1315/637/1/012056.
Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree biomass in mixed secondary forest. For Ecol Manag 146: 199-209. DOI: 10.1016/S0378-1127(00)00460-6.
Khasanah N, van Noordwijk M, Ningsih H. 2015. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environ Sci 1: 1119964. DOI: : 10.1080/23311843.2015.1119964.
Krisnawati H, Adinugroho WC, Imanuddin R. 2012. Monograf Model-Model Alometrik untuk Pendugaan Biomassa Pohon pada Berbagai Tipe Ekosistem Hutan di Indonesia. Pusat Penelitian dan Pengembangan Konservasi dan Rehabilitasi, Bogor. [Indonesian]
Lal R, Negassa W, Lorenz K. 2015. Carbon sequestration in soil. Curr Opin Environ Sustain 15: 79-86. DOI: 10.1016/j.cosust.2015.09.002.
Lutz JA, Furniss TJ, Johnson DJ et al. 2018. Global importance of large-diameter trees. Glob Ecol Biogeogr 27 (7): 849-864. DOI: 10.1111/geb.12747.
Mildrexler DJ, Berner LT, Law BE, Birdsey RA, Moomaw WR. 2020. Large trees dominate carbon storage in forests east of the cascade crest in the United States Pacific Northwest. Front For Glob Change 3: 594274. DOI: 10.3389/ffgc.2020.594274.
Ministry of Environment and Forestry (MoEF). 2018. Environment and Forestry Statistics in 2018. Ministry of Environment and Forestry, Jakarta. [Indonesian]
Mondal A, Khare D, Kundu S, Mondal S, Mukherjee S, Mukhopadhyay A. 2016. Spatial Soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt J Remote Sens Space Sci 20: 61-70. DOI: 10.1016/j.ejrs.2016.06.004.
Morin X. 2015. Species richness promotes canopy packing: A promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct Ecol 29: 993-994. DOI: 10.1111/1365-2435.12473.
Muhdi, Risnasari I, Bayu ES. 2015. Pendugaan cadangan biomassa di atas permukaan tanah perkebunan kelapa sawit di Sumatera Utara. Jurnal Bumi Lestari 15 (1): 40-46. [Indonesian]
Na M, Sun X, Zhang Y, Sun Z, Rousk J. 2021. Higher stand densities can promote soil carbon storage after conversion of temperate mixed natural forests to larch plantations. Eur J For Res 140 (2): 373-386. DOI: 10.1007/s10342-020-01346-9.
Nangin MA, Barus IRG, Wahyoedi S. 2020. The effects of perceived ease of use, security, and promotion on trust and its implications on fintech adoption. J Consum Sci 5 (2): 124-138. DOI: 10.29244/jcs.5.2.124-138.
Nero BF, Opoku J. 2022. Topography alters stand structure, carbon stocks and understorey species composition of Cedrela odorata plantation, in a semi-deciduous forest zone, Ghana. Trees For People 10: 100352. DOI: 10.1016/j.tfp.2022.100352.
Nur AAI, Arifiani KN, Ramadhandi AR Sabrina AD, Nugroho GD, Kusumaningrum L, Ramdhun D, Bao TQ, Yap CK, Budiharta S, Setyawan AD. 2022. Estimation of aboveground biomass and carbon stock in Damas Beach, Trenggalek District, East Java, Indonesia. Indo Pac J Ocean Life 6 (2): 80-86. DOI: 10.13057/oceanlife/o060203.
Oliver TH, Morecroft MD. 2014. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdiscip Rev Clim Change 5 (3): 317-335. DOI: 10.1002/wcc.271.
Parsons SA, Valdez-Ramirez V, Congdon RA, Williams SE. 2014. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosci Discuss 11: 5047-5056. DOI: 10.5194/bg-11-5047-2014.
Rahman FA, Qayim I, Wardiatno Y. 2018. Carbon storage variability in seagrass meadows of Marine Poton Bako, East Lombok, West Nusa Tenggara, Indonesia. Biodiversitas 19 (5): 1626-1631. DOI: 10.13057/biodiv/d190505.
Rodrigues GG, Silva LD, Nouvellon Y. 2021. Production and carbon allocation in clonal Eucalyptus plantation under different planting spacings. For Ecol Manag 493: 1-15. DOI: 10.1016/j.foreco.2021.119249.
Sang PM, Lamb D, Bonner M, Schmidt S. 2013. Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant Soil 362: 187-200. DOI 10.1007/s11104-012-1281-9.
Saragih WS, Purba E, Tampubolon K. 2018. Identification and analysis of weed vegetation as Ganoderma presence marker on oil palm plantation. Jurnal Natural 18 (3): 135-140. DOI 10.24815/jn.v18i3.11595.
Sattler D, Murray LT, Kirchner A, Lindner A. 2014. Influence of soil and topography on aboveground biomass accumulation and carbon stocks of afforested pastures in South East Brazil. Ecol Eng 73: 126-131. DOI: 10.1016/j.ecoleng.2014.09.003.
Shanti R, Nirmala R. 2018. Evaluation of post-mining land for rubber and oil palm plantations in Kutai Kartanegara, Indonesia. J Agric Environ Intl Dev 112 (1): 25-42. DOI: 10.12895/jaeid.20181.689.
Shi D, Maydeu-Olivares A. 2020. The effect of estimation methods on SEM fit indices. Educ Psychol Meas 80 (3): 421-445. DOI: 10.1177/0013164419885164.
Shiferaw H, Kassawmar T, Zeleke G. 2022. Above and below-ground woody-biomass and carbon stock estimations at Kunzila watershed, Northwest Ethiopia. Trees For People 7: 100204. DOI: 10.1016/j.tfp.2022.100204.
Shirima DD, Totland O, Munishi PKT, Moe SR. 2015. Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania. Basic Appl Ecol 16 (3): 239-249. DOI: 10.1016/j.baae.2014.11.008.
Sinha S, Badola HK, Chhetri B, Gaira KS, Lepcha J, Dhyani PP. 2018. Effect of altitude and climate in shaping the forest compositions of Singalila National Park in Khangchendzonga Landscape, Eastern Himalaya, India. J Asia-Pac Biodivers 11: 267-275. DOI: 10.1016/j.japb.2018.01.012.
Siregar CA. 2007. Formulasi allometrik biomassa dan konservasi karbon tanah hutan tanaman Sengon (Paraserianthes falcataria (L.) Nielsen) di Kediri. Jurnal Penelitian Hutan dan Konservasi Alam 4 (2):169-181. DOI: 10.20886/jphka.2007.4.2.139-149. [Indonesian]
Suberi B, Tiwari KR, Gurung DB, Roshan M, Bajracharya RM, Situla BK. 2018. Effect on harvesting and non-harvested forest management on carbon stocks. J Environ Clim Change 8 (3): 152-164. DOI: 10.9734/IJECC/2018/41984.
Sukartono, Arifin AB, Lolita ES, Karina PS, Sutriono, Fahrudin. 2023. Evaluation of potential total carbon stock under various agroforestry types in Sanaru Forest Area-North Lombok, Indonesia. IOP Conf Ser: Earth Environ Sci 1160: 012080. DOI: 10.1088/1755-1315/1160/1/012080.
Sun W, Zhu H, Guo S. 2015. Soil organic carbon as a function of land use and topography on the Loess Plateau of China. Ecol Eng 83: 249-257. DOI: 10.1016/j.ecoleng.2015.06.030.
Teshome DT, Zharare GE, Naidoo S. 2020. The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front Plant Sci 11: 601009. DOI: 10.3389/fpls.2020.601009.
van der Sande MT, Arets EJMM, Pena-Claros M, Hoosbeek MR, Caceres-Siani Y, van der Hout P, Poorter L. 2018. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese Tropical Rainforest. Funct Ecol 32: 461-474. DOI: 10.1111/1365-2435.12968.
Wicke B, Sikkema R, Dornburg V, Faaij A. 2011. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 28: 193-206. DOI: 10.1016/j.landusepol.2010.06.001.
Wulandari C, Landicho LD, Cabahug RED, Baliton RS, Banuwa RS, Herwanti S, Biono P. 2019. Food security status agroforestry landscapes of Way Betung Watershed, Indonesia and Molawin Dampalit Subwatershed, Philippines. Jurnal Manajemen Hutan Tropika 25 (3): 164-172. DOI: 10.7226/jtfm.25.3.164.
Yang X, Liu X. 2023. Path analysis and mediating effects of influencing factors of land use carbon emissions in Chang-Zhu-Tan urban agglomeration. Tecnol Forecast Soc Change 188: 122268. DOI: 10.1016/j.techfore.2022.122268.