Unraveling metabolite profile variations among resistance and susceptible shallot genotypes related to anthracnose (Colletotrichum gloeosporioides)

##plugins.themes.bootstrap3.article.main##

RIZKI ABI AMRULLAH
AWANG MAHARIJAYA
AGUS PURWITO
SURYO WIYONO

Abstract

Abstract. Amrullah RA, Maharijaya A, Purwito A, Wiyono S. 2023. Unraveling metabolite profile variations among resistance and susceptible shallot genotypes related to anthracnose (Colletotrichum gloeosporioides). Biodiversitas 24: 5113-5122.This study used a metabolomics approach to reveal the shallot metabolite profile under anthracnose disease conditions through GC-MS analysis. The aim of this study was to obtain candidate metabolite markers that differentiate shallot genotypes resistant to anthracnose. The results of non-targeted metabolite analysis with GC-MS revealed a shallot metabolite profiles of 54 compounds. The principal component analysis (PCA) model was conducted for reliable and accurate discrimination between uninoculated and inoculated genotypes. Four metabolites were revealed as putative biomarkers of Colletotrichum gloeosporioides Penz. infection, namely linoleic ethyl ester, squalene, octadecanoic acid, and nonacosane. At least some putative biomarkers were applicable for early resistance genotype detection in shallot. These metabolites may help characterize pathogen infection and plant defense responses. This study confirmed metabolomics as a tool to develop a strategy to clarify the mechanism of plant-pathogen interaction. Furthermore, the data presented may be helpful to developing a new method for detecting shallot, that may be resistant to anthracnose caused by C. gloeosporioides.

##plugins.themes.bootstrap3.article.details##

References
Abdelrahman M, Ariyanti NA, Sawada Y, Tsuji F, Hirata S, Hang TTM, Okamoto M, Yamada Y, Tsugawa H, Hirai MY, et al. 2020. Metabolome-Based Discrimination Analysis of Shallot Landraces and Bulb Onion Cultivars Associated with Differences in the Amino Acid and Flavonoid Profiles. Molecules. 25(22).doi:10.3390/molecules25225300.
Afifah EN, Murti RH, Nuringtyas TR. 2020. Comparison of metabolomics expression in the root and leaf of resistance and susceptible tomato against root-knot nematode. Agrivita. 42(3):563–571.doi:10.17503/agrivita.v42i3.2440.
Alberto R., Nueva E, Duca MSV, Santiago SE, Miller SA, Black LL. 2001. First report of anthracnose of onion (Allium cepa L.) caused by Colletotrichum gloeosporioides (Penzig) Penzig & Sacc., in the Philippine. Former. Philipp. Phytopathol. 37(1):46–51.
Aliferis KA, Faubert D, Jabaji S. 2014. A Metabolic Profiling Strategy for the Dissection of Plant Defense against Fungal Pathogens. PLoS One. 9(11).doi:10.1371/journal.pone.0111930.
Allen D. 1983. The Pathology of Tropical Food Legumes. New York (US): John Willey.
Armesto C, Maia FGM, Monteiro FP, de Abreu MS. 2019. Exoenzymes as a pathogenicity factor for colletotrichum gloeosporioides associated with coffee plants. Summa Phytopathol. 45(4):368–373.doi:10.1590/0100-5405/191071.
Carlson R, Tugizimana F, Steenkamp PA, Dubery IA, Labuschagne N. 2019. Differential metabolic reprogramming in Paenibacillus alvei-primed Sorghum bicolor seedlings in response to Fusarium pseudograminearum infection. Metabolites. 9(7).doi:10.3390/metabo9070150.
Chappell LHK, Dunford AJ. 2021. Advances in Plant Breeding Strategies: Vegetable Crops. Volume ke-8.
Chen F, Ma R, Chen XL. 2019. Advances of metabolomics in fungal pathogen–plant interactions. Metabolites. 9(8).doi:10.3390/metabo9080169.
Cohen Y, Gisi U, Mosinger E. 1991. Systemic resistance of potato plants against Phytophthora infestans induced by unsaturated fatty acids. Physiol. Mol. Plant Pathol. 38(4):255–263.doi:10.1016/S0885-5765(05)80117-1.
Coleman MG, Hudson AO. 2016. Chapter 13 - Isolation, Total Synthesis, and Biological Activities of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) Containing Natural Compounds. Di dalam: Atta-ur-Rahman BT-S in NPC, editor. Studies in Natural Products Chemistry. Vol. 47. Elsevier. hlm. 405–430.
Dai T, Chang X, Hu Z, Liang L, Sun M, Liu P, Liu X. 2019. Untargeted Metabolomics Based on GC-MS and Chemometrics: A New Tool for the Early Diagnosis of Strawberry Anthracnose Caused by Colletotrichum theobromicola. Plant Dis. 103(10):2541–2547.doi:10.1094/PDIS-01-19-0219-RE.
Dutta R, Jayalakshmi K, Nadig SM, Manjunathagowda DC, Gurav VS, Singh M. 2022. Anthracnose of Onion (Allium cepa L.): A Twister Disease. Pathogens. 11(8):1–21.
Ebenebe AC. 1980. Onion twister disease caused by Glomerella cingulata in northern Nigeria. Plant Dis. 64(11).
Ghimire GP, Nguyen HT, Koirala N, Sohng JK. 2016. Advances in biochemistry and microbial production of squalene and its derivatives. J. Microbiol. Biotechnol. 26(3):441–451.
Hanifah A, Maharijaya A, Putri SP, Laviña WA, Sobir. 2018. Untargeted metabolomics analysis of eggplant (Solanum melongena L.) fruit and its correlation to fruit morphologies. Metabolites. 8(3).doi:10.3390/metabo8030049.
Hekmawati H, Poromarto SH, Widodo S. 2018. Resistance of Several Shallot Varieties Against Colletotrichum gloeospoioides (In Indonesian). Agrosains J. Penelit. Agron. 20(2):40.
Hidayat IM, Sulastrini I. 2016. Screening for tolerance to anthracnose (Colletotrichum gloeosporioides) of shallot (Allium ascalonicum) genotypes. Acta Hortic. 1127:89–95.doi:10.17660/ActaHortic.2016.1127.16 CITATIONS.
Lekshmi N, Packia V, Viswanathan M, Manivannan G, Shobi M. 2014. GC-MS Characterization of Volatile Odorous Compounds in Allium Cepa. Nanobio Pharm. Technol.(December):489–494.
Lowe?Power TM, Hendrich CG, von Roepenack?Lahaye E, Li B, Wu D, Mitra R, Dalsing BL, Ricca P, Naidoo J, Cook D. 2018. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ. Microbiol. 20(4):1330–1349.
Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala AL. 2018. Plant Sources, Extraction Methods, and Uses of Squalene. Int. J. Agron. 2018.doi:10.1155/2018/1829160.
Lykholat Y V, Khromykh NO, Didur OO, Davydov VR, Sklyar T V, Drehval OA, Vergolyas MR, Verholias OO, Marenkov OM, Nazarenko MM, et al. 2021. Features of the fruit epicuticular waxes of Prunus persica cultivars and hybrids concerning pathogens susceptibility. Ukr. J. Ecol. 11(1):261–266.
Maia FC, Wijesinghe GK, Barbosa JP, de Feiria SNB, Oliveira TR, Boni GC, Jóia F, da Silva Cardoso V, Franco VAPD, Anibal PC, et al. 2022. Anticandidal Activity of Hydroalcoholic Extract of Phyllanthus niruri L. (Stone-Breaker). Brazilian Arch. Biol. Technol. 65(Mic).doi:10.1590/1678-4324-2022210539.
Marlin, Maharijaya A, Purwito A. 2019. Keragaan Karakter Pembungaan Kuantitatif dan Profil Metabolomik Bawang Merah (Allium cepa var. aggregatum) yang Diinduksi dengan Perlakuan Vernalisasi. J. Hortik. Indones. 9(3):197–205.doi:10.29244/jhi.9.3.197-205.
Medina-Melchor DL, Zapata-Sarmiento DH, Becerra-Martínez E, Rodríguez-Monroy M, Vallejo LGZ, Sepúlveda-Jiménez G. 2022. Changes in the metabolomic profiling of Allium cepa L. (onion) plants infected with Stemphylium vesicarium. Eur. J. Plant Pathol. 162(3):557–573.doi:10.1007/s10658-021-02421-6.
Naser EH, Kashmer AM, Abed SA. 2019. Antibacterial activity and phytochemical investigation of leaves of Calotropis procera plant in Iraq by GC-MS. IJPSR. 10(4):1988–1994.
Nischwitz C, Langston D, Sanders HF, Torrance R, Lewis KJ, Gitaitis RD. 2008. First report of Colletotrichum gloeosporioides causing “twister disease” of onion (Allium cepa) in Georgia. Plant Dis. 92(6):974.doi:10.1094/PDIS-92-6-0974C.
Panday SS. 2012. Ultrastructural characterization of infection and colonization of Colletotrichum gloeosporioides in onion. Plant Pathol. Quar. 2(2):168–177.
Perez de Souza L, Alseekh S, Naake T, Fernie A. 2019. Mass Spectrometry-Based Untargeted Plant Metabolomics. Curr. Protoc. plant Biol. 4(4):e20100.doi:10.1002/cppb.20100.
Piasecka A, Sawikowska A, Witaszak N, Wa?kiewicz A, Ka?czurzewska M, Kaczmarek J, Lalak-Ka?czugowska J. 2022. Metabolomic Aspects of Conservative and Resistance-Related Elements of Response to Fusarium culmorum in the Grass Family. Cells. 11(20).doi:10.3390/cells11203213.
Pontin M, Bottini R, Burba JL, Piccoli P. 2015. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. Phytochemistry. 115:152–160.doi:https://doi.org/10.1016/j.phytochem.2015.02.003.
Qi X, Chen X, Wang Y. 2015. Plant metabolomics: Methods and applications. Di dalam: Plant Metabolomics: Methods and Applications. hlm. 1–319.
Reina-Pinto JJ, Yephremov A. 2009. Surface lipids and plant defenses. Plant Physiol. Biochem. 47(6):540–549.doi:https://doi.org/10.1016/j.plaphy.2009.01.004.
Sidhu J, Ali M, Al-Rashdan A, Ahmed N. 2019. Onion (Allium cepa L.) is potentially a good source of important antioxidants. J. Food Sci. Technol. 56(4).doi:10.1007/s13197-019-03625-9.
Singh AK, Kumar SR, Dwivedi V, Rai A, Pal S, Shasany AK, Nagegowda DA. 2017. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytol. 215(3):1115–1131.doi:10.1111/nph.14663.
Singh P, Arif Y, Miszczuk E, Bajguz A, Hayat S. 2022. Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. Plants. 11(7).doi:10.3390/plants11070979.
Viswanath KK, Varakumar P, Pamuru RR, Basha SJ, Mehta S, Rao AD. 2020. Plant lipoxygenases and their role in plant physiology. J. Plant Biol. 63:83–95.
Wiyono S. 2007. Perubahan Iklim dan Ledakan Hama dan Penyakit Tanaman. Di dalam: Keanekaragaman Hayati Ditengah Perubahan Iklim: Tantangan Masa Depan Indonesia. KEHATI.
Yin Y, Bi Y, Chen S, Li Yongcai, Wang Y, Ge Y, Ding B, Li Yingchao, Zhang Z. 2011. Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli). Sci. Hortic. (Amsterdam). 129(4):577–582.doi:10.1016/j.scienta.2011.04.028.

Most read articles by the same author(s)

1 2 3 > >>