Morpho-physiology and metabolite content of Cosmos caudatus Kunth. and yellow and orange Cosmos sulphureus Cav.

##plugins.themes.bootstrap3.article.main##

ISMAIL SALEH
SANDRA ARIFIN AZIZ
MAYA MELATI
NURI ANDARWULAN

Abstract

Abstract. Saleh I, Aziz SA, Melati M, Andarwulan N. 2023. Morpho-physiology and metabolite content of yellow and orange Cosmos sulphureus Cav. and Cosmos caudatus Kunth. Biodiversitas 24: 5739-5746. Cosmos sp., known as kenikir in Indonesia, is an underutilized vegetable commodity. Cosmos sulphureus Cav.  (C. sulphureus), with orange and yellow flowers, is commonly found as an ornamental plant. C. sulphureus can also be used as vegetable crops, although the Cosmos species widely used as a vegetable is Cosmos caudatus Kunth. (C. caudatus). This study investigated the growth, shoot production, primary and secondary metabolite content, and antioxidant activity of yellow and orange C. sulphureus and C. caudatus. This experiment was arranged using a Randomized Completely Block Design (RCBD) with one factor: Cosmos species (yellow and orange C. sulphureus and C. caudatus) with six replications. The result showed that plant height, leaf number, and branch number were not significantly different among the three Cosmos studied; however, the shoot weight per plant of orange C. sulphureus was significantly higher than the others. The antioxidant activity and phenol content of C. sulphureus were lower than that of C. caudatus. Meanwhile, crude fiber, flavonoid, anthocyanin, and carotenoid content were not significantly different among the three kinds of Cosmos. Orange C. sulphureus could be a functional vegetable, although its antioxidant activity is lower than C. caudatus.

##plugins.themes.bootstrap3.article.details##

References
Aldini GM, Martono E, Trisyono YA. 2019. Diversity of natural enemies associated with refuge flowering plants of Zinnea elegans, Cosmos sulphureus, and Tagetes erecta in rice ecosystem. J Perlindungan Tanam Indones 23(2):285–291. DOI: 10.22146/jpti.33947.
Alzate-Yepes T, Pérez-Palacio L, Martínez E, Osorio M. 2023. Mechanisms of action of fruit and vegetable phytochemicals in colorectal cancer prevention. Molecules 28(11):4322. DOI:10.3390/molecules28114322.
Andarwulan N, Batari R, Sandrasari DA, Bolling B, Wijaya H. 2010. Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chem. 121(4):1231–1235. DOI:10.1016/j.foodchem.2010.01.033.
Andrushchenko O, Levon V. 2021. The content of flavonoids in Cosmos sulphureus. Plant Introd 89/90:83–88. DOI:10.46341/PI2021003.
Arias A, Feijoo G, Moreira MT. 2022. Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. Innov Food Sci Emerg Technol 77:102974. DOI:10.1016/j.ifset.2022.102974.
Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8(96):1–12. DOI:10.3390/plants8040096.
Chadwick M, Gawthrop F, Michelmore RW, Wagstaff C, Methven L. 2016. Perception of bitterness, sweetness and liking of different genotypes of lettuce. Food Chem 197:66–74. DOI:10.1016/j.foodchem.2015.10.105.
Cheng SH, Khoo HE, Ismail A, Abdul-Hamid A, Barakatun-Nisak MY. 2016. Influence of extraction solvents on Cosmos caudatus leaf antioxidant properties. Iran J Sci Technol Trans Sci 40:51–58. DOI:10.1007/s40995-016-0007-x.
Collini E. 2019. Carotenoids in photosynthesis: The revenge of the ‘“accessory”’ pigments. Chem 5:494–504. DOI:10.1016/j.chempr.2019.02.013.
Datiles M. 2022. Cosmos caudatus (wild cosmos). CABI Compend. DOI: 10.1079/cabicompendium.117946.
Gariballa S, Al-Bluwi GSM, Yasin J. 2023. Increased fruit and vegetable consumption mitigates oxidative damage and associated inflammatory response in obese subjects Independent of Body Weight Change. Nutrients 15(7):1638. DOI:10.3390/nu15071638.
Granato D, Nunes DS, Barba FJ. 2017. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci Technol 62:13–22. DOI:10.1016/j.tifs.2016.12.010.
Gunasekaran D, Tahir NI, Akbar MA, Basir S, Ismail I, Talip N, Ramzi AB, Baharum SN, Noor NM, Bunawan H. 2021. Discovery of anthocyanin biosynthetic pathway in Cosmos caudatus Kunth. using omics analysis. Agronomy 11(661). DOI:10.3390/agronomy11040661.
Igile GO, Iwara IA, Mgbeje BIA, Uboh FE, Ebong PE. 2013. Phytochemical, proximate and nutrient composition of Vernonia calvaona Hook (Asterecea): a green-leafy vegetable in Nigeria. J Food Res 2(6):1–11. DOI:10.5539/jfr.v2n6p1.
Irshad M, Debnath B, Mitra S, Arafat Y, Li M, Sun Y, Qiu D. 2018. Accumulation of anthocyanin in callus cultures of red-pod okra [Abelmoschus esculentus (L.) Hongjiao] in response to light and nitrogen levels. Plant Cell Tissue Organ Cult 134:29–39. DOI:10.1007/s11240-018-1397-6.
Khan A, Jan A, Bashir S, Noor M. 2005. Effect of nitrogen and seed size on maize crop. I: stand and plant height. J Agri Soc Sci 1(4):380–381. DOI:1813–2235/2005/01–4–380–381.
Lamont BB, Williams MR, He T. 2023. Relative growth rate (RGR) and other confounded variables: mathematical problems and biological solutions. Ann Bot 20:1–13. DOI:10.1093/aob/mcad031.
Lasmini SA, Nasir B, Hayati N, Edy N. 2018. Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Aust J Crop Sci 12(11):1743–1749. DOI:10.3316/informit.096934421301743.
Mason MG, Ross JJ, Babst BA, Wiendaw BN, Beveridge CA. 2014. Sugar demand, not auxin, is the initial regulator of apical dominance. PNAS 111(16):6092–6097. DOI:10.1073/pnas.1322045111.
McKim SM. 2020. Moving up - controlling internode growth. New Phytol 226(3):672–678. DOI:10.1073/pnas.1322045111.
Montoya-Garcia CO, Volke-Haller VH, Trinidad-Santos A, Villanueva-Verdusco C. 2018. Change in the contents of fatty acids and antioxidant capacity of purslane in relation to fertilization. Sci Hortic (Amsterdam) 234:152–159. DOI:10.1016/j.scienta.2018.02.043 R.
Nisar N, Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid Metabolism in Plants. Mol Plant 8:68–82. DOI:10.1016/j.molp.2014.12.007.
Phuse SS, Khan ZA. 2018. Estimation of free radical scavenging activity of cosmos leaves extract. Int J Recent Sci Res 9(8):28355–28358. DOI:10.24327/ijrsr.2018.0908.2445.
Poorter H. 1989. Interspecific variation in relative growth rate: on ecological causes and physiological consequences. In: Lambers H (ed.). Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. SPB Academic Publishing, The Hague.
Pullailah T, Bahadur B, Krishnamurty K V. 2015. Plant biodiversity. In: Bahadur B (ed.). Plant Biology and Biotechnology. Springer, India.
Puttock CF. 2022. Cosmos sulphureus (sulphur cosmos). CABI Compend. DOI: 10.1079/cabicompendium.110395.
Rahanita P, Susila AD, Kartika JG. 2015. Pengaruh pupuk organik pada pertumbuhan dan hasil tanaman kenikir (Cosmos caudatus) dan Katuk (Sauropus androgynus). Bul Agrohorti 3(2):169–176. DOI:10.29244/agrob.v3i2.14921.
Ramadhan F, Mukarramah L, Oktavia FARH, Yulian R, Annisyah NH, Asyiah IN. 2018. Flavonoids from endophytic bacteria of Cosmos caudatus Kunth. leaf as an anticancer and antimicrobial. Asian J Pharm Clin Res 11(1):200–204. DOI:10.22159/ajpcr.2018.v11i1.21987.
Respatie DW, Yudono P, Purwantoro A, Trisyono YA. 2019. The potential of Cosmos sulphureus flower extract as bioherbicide for Cyperus rotundus. Biodiversitas 20(12):3568–2574. DOI:https://doi.org/10.13057/biodiv/d201215.
R?ži?ková B, Kohout P. 2023. Current nutritional guidelines in terms of the effect on gut microbiota and human health considering the WHO and FAO recommendations. Czech J Food Sci 41(1):1–7. doi:10.17221/186/2022-CJFS.
Saleh I, Aziz SA, Andarwulan N. 2014. Shoot production and metabolite content of waterleaf with organic fertilizer. J Agron Indones 42(3):210–214. DOI: 10.24831/jai.v42i3.9169.
Sarker M, Rahman M. 2017. Dietary fiber and obesity management - a review. Adv Obes Weight Manag Control 7(3):295–297. DOI:10.15406/aowmc.2017.07.00199.
Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. 2017. Anthocyanin extraction from plant tissues: A review. Crit Rev Food Sci Nutr 57(14):3072–3083. DOI:10.1080/10408398.2015.1087963.
Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354. DOI:10.1016/S0034-4257(02)00010-X.
Son M, Hart SM, Schlau-Cohen GS. 2021. Investigating carotenoid photophysics in photosynthesis with two-dimensional electronic spectroscopy. Trends Chem 3(9):733–746. DOI:10.1016/j.trechm.2021.05.008.
Taiz L, Zeiger E. 2006. Plant Physiology. Sinauer Associates, Inc., Massachusetts.
Tanimonure VA, Naziri D, Codjoe SNA, Ayanwale AB. 2021. Underutilized indigenous vegetables for household dietary diversity in Southwest Nigeria. Agric 11(11):1064. DOI:10.3390/agriculture11111064.
Tränkner M, Tavakol E, Jákli B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plant 163:414–431. DOI:10.1111/ppl.12747.
Trojak M, Skowron E. 2017. Role of anthocyanins in high-light stress response. World Sci News 81(2):150–168.
Voitsekhovskaja O V, Tyutereva E V. 2015. Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. J Plant Physiol 189:51–64. DOI:10.1016/j.jplph.2015.09.013.
Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W. 2013. Maximizing total phenolics, total flavonoid contents, and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind Crops Prod 44:566–571. DOI:10.1016/j.indcrop.2012.09.021.
Wang C, Chen Y, Hou C. 2019. Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop 22(1):230–238. DOI:10.1080/10942912.2019.1582541.
Wang C, Tang Y. 2019. Responses of plant phenology to nitrogen addition: a meta-analysis. Oikos 128:1243–1253. DOI:10.1111/oik.06099.
Wang P, Fang J, Gao Z, Zhang C, Xie S. 2016. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J Diabetes Investig 7:56–69. DOI:10.1111/jdi.12376.
Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD. 2015. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6:167. DOI:10.3389/fpls.2015.00167.
Wroblewska A, Stawiarz E, Masierowska M. 2016. Evaluation of selected ornamental Asteraceae as a pollen source for urban bees. J Apic Sci 60(2):179–191. DOI:10.1515/jas-2016-0031.
Xu X, Du X, Wang F, Sha J, Chen Q, Tian G, Zhu Z, Ge S, Jiang Y. 2020. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front Plant Sci 11:904. DOI:10.3389/fpls.2020.00904.
Yurlisa K, Maghfoer MD, Aini N, Yamika WSD. 2018. Preferensi konsumen terhadap atribut kualitas tiga jenis sayuran indigenous di Jawa Timur, Indonesia. J Hort Indones 9(3):158–166. DOI:10.29244/jhi.9.3.158-166.
Zhang Z, Xu G, Ma M, Yang J, Liu X. 2013. Dietary fiber intake reduces risk for gastric cancer: A meta-analysis. Gastroenterology 145(1):113–120. DOI:10.1053/j.gastro.2013.04.001.