Antimicrobial and FAD synthetases modulating activities of leporins A-C isolated from the sponge-associated fungus Trichoderma sp.




Abstract. Losung F, Ginting EL, Abdjul B, Kapojos MM, Maarisit W, Mentang F, Sumilat DA, Balansa W, Mangindaan REP. 2023. Antimicrobial and FAD synthetases modulating activities of leporins A-C isolated from the sponge-associated fungus Trichoderma sp. Biodiversitas 24: 6502-6515. The emergence of microbial resistance poses a formidable threat to human health, requiring the discovery of new antibiotics. In this study, we investigated the antimicrobial potential and molecular structures of the metabolites produced by a sponge's symbiont fungal species, Trichoderma sp., in vitro against S. aureus IAM 12544T and Candida albicans IFM 4954 and in-silico against the emerging antibacterial target, prokaryotic bifunctional synthetases (FADS). The molecular structures were determined using spectroscopic techniques (1D, 2D NMR, HRESIMS), while the assessment of biological activities, physicochemical properties, and molecular modifications was performed through a slightly modified disk agar diffusion method, molecular docking, SwissAdme and pkCMS tools, and bioisosterism, respectively. The analysis of spectroscopic data supported the identification of leporins A-C (1-3) as the metabolites, which exhibited strong binding affinities against the 2X0K protein target (-8.9 to -9.4 kcal/mol). Despite their being slightly weaker than known FADS modulators such as compounds 4 (-10.5 kcal/mol) and 5 (-10.5 kcal/mol), leporins A-C demonstrated a stronger binding affinity than compound 6 (-9.6 to -10.5 kcal/mol). Notably, substituting a methyl group with a fluorine atom in 1-3 resulted in lepofluorins A-C (1a-3a), which exhibited enhanced binding affinities and improved physicochemical properties compared to the existing FADS modulators. These findings suggest that leporins A-C (1-3), particularly lepofluorins A-C (1a-3a), have potential as putative novel modulators of FADS. This study provides valuable insights into the design and development of new antibiotics to combat microbial resistance.


Al-Harthy, T., Zoghaib, W., & Abdel-Jalil, R. (2020). Importance of fluorine in benzazole compounds. Molecules, 25(20), 4677.Bax, B. D., Chan, P. F., Eggleston, D. S., Fosberry, A., Gentry, D. R., Gorrec, F., ... & Gwynn, M. N. (2010). Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 466(7309), 935-940. doi: 10.3390/molecules25204677
Chen, G. Y., Zhong, W., Zhou, Z., & Zhang, Q. (2018). Simultaneous determination of tryptophan and its 31 catabolites in mouse tissues by polarity switching UHPLC-SRM-MS. Analytica chimica acta, 1037, 200-210.
Coates, A. R., Halls, G., & Hu, Y. (2011). Novel classes of antibiotics or more of the same?. British journal of pharmacology, 163(1), 184–194.
Durdu, B., Koc, M. M., Hakyemez, I. N., Akkoyunlu, Y., Daskaya, H., Gultepe, B. S., & Aslan, T. (2019). Risk factors affecting patterns of antibiotic resistance and treatment efficacy in extreme drug resistance in intensive care unit-acquired Klebsiella pneumoniae infections: a 5-year analysis. Medical science monitor: international medical journal of experimental and clinical research, 25, 174. doi: 10.12659/MSM.911338
Feng B, Sosa RP, Mårtensson AK, Jiang K, Tong A, Dorfman KD, Takahashi M, Lincoln P, Bustamante CJ, Westerlund F, Nordén B. Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proceedings of the National Academy of Sciences. 2019 Aug 27;116(35):17169-74.
Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem Biol Interact. 2021 Feb 1;335:109348.
Grant, R. S., Coggan, S. E., & Smythe, G. A. (2009). The physiological action of picolinic acid in the human brain. International journal of tryptophan research, 2, IJTR-S2469.
Glöckle A, Gulder TAM. 2018. A pericyclic reaction cascade in leporin biosynthesis. Angewa. Chemie (International ed. in English), 57(11), 2754–2756.
Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Path, 7(9), e1002251.
Gross E, Kastner DB, Kaiser CA, Fass D. 2004. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell, 117(5), 601–610.
Gottel, N. R., Castro, H. F., Kerley, M., Yang, Z., Pelletier, D. A., Podar, M., ... & Schadt, C. W. (2011). Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and environmental microbiology, 77(17), 5934-5944.
Kuehn, B. (2018). Antibiotic resistance challenge. Jama, 320(18), 1851-1851.
Losung G, Losung F, Lintang RAJ, Wullur S, Manoppo H. 2022. Aktivitas antibakteri dari spons asl perairan Pulau Bantong Bolaang Mangondow Timur. J. Pes. Laut. Trop. 10(1), 81-88.
Myllykallio H, Lipowski G, Leduc D, Filee J, Forterre P, Liebl U. 2002. An alternative flavin-dependent mechanism for thymidylate synthesis. Science (New York, N.Y.), 297(5578), 105–107.
Okamoto T, Kishimoto S, Watanabe K. 2022. Isolation of natural prodrug-like metabolite by simulating human prodrug activation in filamentous fungus. Chem. Pharm. Bull. 70(4), 304–308.
Parsons HG, Dias VC. 1991. Intramitochondrial fatty acid metabolism: riboflavin deficiency and energy production. Biochemistry and cell biology = Bioch. et Biol. Cell. 69(7), 490–497.
Pasodung A, Losung F, Angkouw E, Lintang R, Mantiri D, Sumilat, D. 2018. J. Pes. Laut Trop. 6 (1), 44-51.
FAD synthetases. Journal of enzyme inhibition and medicinal chemistry, 33(1), 241–254.
Patani, G. A., & LaVoie, E. J. (1996). Bioisosterism: a rational approach in drug design. Chemical reviews, 96(8), 3147-3176.
Patel, D. B., Patel, K. D., Prajapati, N. P., Patel, K. R., Rajani, D. P., Rajani, S. D., ... & Patel, H. D. (2019). Design, synthesis, and biological and in silico study of fluorine?containing quinoline hybrid thiosemicarbazide analogues. Journal of Heterocyclic Chemistry, 56(8), 2235-2252.
Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PloS one, 5(8), e12029.
Pariente N, on behalf of the PLOS Biology Staff Editors (2022) The antimicrobial resistance crisis needs action now. PLoS Biol 20(11): e3001918.
Polanski, J., Bogocz, J., & Tkocz, A. (2016). The analysis of the market success of FDA approvals by probing top 100 bestselling drugs. Journal of Computer-Aided Molecular Design, 30(5), 381–389.
Ramsay RR.2019. Electron carriers and energy conservation in mitochondrial respiration. Chem. Texts. 5 (9), 1-14.
Rompis AAO, Losung F, Sumilat DA, Windarto AB, Wullur S, Lalamentik LTX. 2018. The antibacterial activity of several sponges from the waters of Tasik Ria against Escherichia coli and Staphylococcus aureus bacteria. J. Ilm. PLATAX, 7(1), 1–8.
Sassetti C M, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Micro., 48(1), 77–84.
Sebastián M, Anoz-Carbonell E, Gracia B, Cossio P, Aínsa JA, Lans I, Medina M. 2018. Discovery of antimicrobial compounds targeting bacterial type
Serrano A, Ferreira P, Martínez-Júlvez M, Medina M. 2012. The prokaryotic FAD synthetase family: a potential drug target. Current Pharm. Des. 19(14), 2637–2648.
Setyowati, Erna Prawita, Hertiani, T, Samara, O. "Bioactivity of fungi Trichoderma reesei associated with sponges Stylissa flabelliformis collected from national park West Bali, Indonesia." Journal of Biological sciences 17.8 (2017): 362-368.
Snider B, Qingyi L. 1996. Total Synthesis of (+/-)-Leporin A. 1996. J. of org. chem.18, 2839-2844. DOI: 10.1021/jo952053i
Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441–6.
Tiwari, A. (2015, October). Applications of bioinformatics tools to combat the antibiotic resistance. In 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI) (pp. 96-98). IEEE. DOI: 10.1109/ICSCTI.2015.7489545.
Tan, Y. N., Zeng, J., Zhang, S. N., Ma, R. J., Pan, Z. H., & Tan, Q. G. (2019). Pyridone alkaloids from the leaves of Ricinus communis and their inhibitory effect against protein tyrosine phosphatase 1B. Chemistry of Natural Compounds, 55, 395-397. Tan, Y. N., Zeng, J., Zhang, S. N., Ma, R. J., Pan, Z. H., & Tan, Q. G. (2019). Pyridone alkaloids from the leaves of Ricinus communis and their inhibitory effect against protein tyrosine phosphatase 1B. Chemistry of Natural Compounds, 55, 395-397.
Trammell, S. A., Schmidt, M. S., Weidemann, B. J., Redpath, P., Jaksch, F., Dellinger, R. W., ... & Brenner, C. (2016). Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nature communications, 7(1), 12948.
Tao Q, Ding C, Auckloo BN, Wu B. 2018. Bioactive metabolites from a hydrothermal vent fungus Aspergillus sp. YQ-13. Nat. Prod, Comm. 13(5), 571-573.
TePaske, Mark R., et al. "Leporin A: an antiinsectan N-alkoxypyridone from the sclerotia of Aspergillus leporis." Tetrahedron letters 32.41 (1991): 5687-5690.
Tondi D. (2021). Novel Targets and Mechanisms in Antimicrobial Drug Discovery. Antibiotics (Basel, Switzerland), 10(2), 141.
Xiao F, Chen Z, Wei Z, Tian L. 2020. Hydrophobic interaction: A promising driving force for the biomedical applications of nucleic acids. Adv. Sci. 7, 2001048.
Zhang C, Liang J, Mondie B, Mitchell S S, Castehano AL, Cai W, Bergenhem N. Leporin B:2003. A novel hexokinase II gene inducing agent from an unidentified fungus. Bioorg. Med. Chem. Lett. 13, 14.
Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., ... & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved ?-ketoamide inhibitors. Science, 368(6489), 409-412. DOI: 10.1126/science.abb34.