Effect of different drying methods on phenolic content, antioxidant, antidiabetic, anti-obesity, and inhibition kinetic properties of selective green leafy vegetables

##plugins.themes.bootstrap3.article.main##

WAHYU HARYATI MASER
SUPATRA KARNJANAPRATUM
PASSAKORN KINGWASCHARAPONG
KARTHIKEYAN VENKATACHALAM
ALI MUHAMMED MOULA ALI
SRI CHARAN BINDU BAVISETTY

Abstract

Abstract. Maser WH, Karnjanapratum S, Kingwascharapong P, Venkatachalam K, Ali AMM, Bavisetty SCB. 2023. Effect of different drying methods on phenolic content, antioxidant, antidiabetic, anti-obesity, and inhibition kinetic properties of selective green leafy vegetables. Biodiversitas 24: 4896-4909. The present study assessed the impact of dehydration drying, oven drying, and freeze drying on Total Phenolic Content (TPC), antioxidant activities (DPPH, metal chelating, and FRAP), and the inhibition activity of a-amylase, a-glucosidase, and lipase in selected green leafy vegetables, namely celery (Apium graveolens L.), coriander (Coriandrum sativum L.), parsley (Petroselinum crispum (Mill.) Fuss), and spring onion (Allium cepa L.). FTIR analysis was conducted to examine the functional groups, GC-MS was utilized to characterize the compounds, and a kinetic study of a-glucosidase inhibition was undertaken to assess its inhibitory mode as an antidiabetic agent. Freeze drying exhibited the highest extraction yield (17.89% to 26.15%). However, freeze-drying showed lower drying efficiency, TPC, and bioactivities. Oven drying showed the highest bioactivities, including antioxidant and enzyme inhibitory activities. Spring onion demonstrated the highest bioactivity with dehydration drying, particularly in a-glucosidase inhibitory activity. The results notified that oven drying can be highly suitable for green leafy vegetables with thinner structures, facilitating an efficient drying process. On the other hand, dehydration drying is better suited for thicker green leafy vegetables with the appropriate heat pump intensity. The results for bioactivities were aligned with the observed inhibition mechanism, functional groups, and bioactive compounds in the samples analyzed via FTIR and GC-MS analysis. Therefore, selecting the drying method for a specific sample should consider its unique characteristics to ensure optimal bioactivity.

##plugins.themes.bootstrap3.article.details##

References
Abd Rahman NF, Shamsudin R, Ismail A, Shah NNAK, Varith J. 2018. Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innov Food Sci Emerg Technol 50: 217-225. DOI: 10.1016/j.ifset.2018.01.009.
Ademiluyi AO, Aladeselu OH, Oboh G, Boligon AA. 2018. Drying alters the phenolic constituents, antioxidant properties, ??amylase, and ??glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Sci Nutr 6(8): 2123-2133. DOI: 10.1002/fsn3.770.
Adusei S, Otchere JK, Oteng P, Mensah RQ, Tei-Mensah E. 2019. Phytochemical analysis, antioxidant and metal chelating capacity of Tetrapleura tetraptera. Heliyon 5(11). DOI: 10.1016/j.heliyon.2019.e02762.
Agyare C, Appiah T, Boakye YD, Apenteng JA. 2017. Petroselinum crispum: a review. Medicinal spices and vegetables from Africa: 527-547. DOI: 10.1016/B978-0-12-809286-6.00025-X.
Ahmad P, Alvi SS, Iqbal J, Khan MS. 2021. Identification and evaluation of natural organosulfur compounds as potential dual inhibitors of ?-amylase and ?-glucosidase activity: an in-silico and in-vitro approach. Med Chem Res 30: 2184-2202. DOI: 10.1007/s00044-021-02799-2.
Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, Saquib Q, Al-Khedhairy AA, Musarrat J. 2017. Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-Bulk and ZnO-NPs treated Allium cepa roots. Sci Rep 7(1): 40685. DOI: 10.1038/srep40685.
Al-Bishri W, Danial EN. 2013. Comparative study on the antioxidant, antimicrobial activities and total phenolic content of selected seeds from Saudi Arabia. J Food Agric Environ 11: 202-207.
Ali AMM, Gullo M, Rai AK, Bavisetty SCB. 2021. Bioconservation of iron and enhancement of antioxidant and antibacterial properties of chicken gizzard protein hydrolysate fermented by Pediococcus acidilactici ATTC 8042. J Sci Food Agric 101(7): 2718-2726. DOI: 10.1002/jsfa.10898.
Ali AMM, Prodpran T, Benjakul S. 2019. Effect of squalene as a glycerol substitute on morphological and barrier properties of golden carp (Probarbus Jullieni) skin gelatin film. Food Hydrocoll 97: 105201. DOI:10.1016/j.foodhyd.2019.105201.
Ameer K, Shahbaz HM, Kwon JH. 2017. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr Rev Food Sci Food Saf 16(2): 295-315. DOI: 10.1111/1541-4337.12253.
Amorim AM, Nardelli AE, Chow F. 2020. Effects of drying processes on antioxidant properties and chemical constituents of four tropical macroalgae suitable as functional bioproducts. J Appl Phycol 32(2): 1495-1509. DOI: 10.1007/s10811-020-02059-7.
AOAC. (2010). Official methods of analysis of AOAC International. Gaithersburg (Maryland): AOAC International.
Babu A, Kumaresan G, Raj VAA, Velraj R. 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew Sust Energ Rev 90: 536-556. DOI: 10.1016/j.rser.2018.04.002.
Bashkin A, Ghanim M, Abu-Farich B, Rayan M, Miari R, Srouji S, Rayan A, Falah M. 2021. Forty-one plant extracts screened for dual antidiabetic and antioxidant functions: Evaluating the types of correlation between ?-amylase inhibition and free radical scavenging. Molecules 26(2): 317. DOI: 10.3390/molecules26020317.
Bavisetty SCB, Venkatachalam K. 2021. Physicochemical qualities and antioxidant properties of juice extracted from ripe and overripe wax apple as affected by pasteurization and sonication. J Food Process Preserv 45(6): e15524. DOI: 10.1111/jfpp.15524.
Boateng ID, Soetanto DA, Yang XM, Zhou C, Saalia FK, Li F. 2021. Effect of pulsed?vacuum, hot?air, infrared, and freeze?drying on drying kinetics, energy efficiency, and physicochemical properties of Ginkgo biloba L. seed. J Food Process Eng 44(4): e13655. DOI: 10.1111/jfpe.13655.
Chandrashekharaiah K. 2013. Antioxidant and type II diabetes-related enzyme inhibition properties of few selected medicinal plants. Biomed Pharmacol J 6(2): 341. DOI: 10.13005/bpj/423.
Garcìa LM, Ceccanti C, Negro C, De Bellis L, Incrocci L, Pardossi A, Guidi L. 2021. Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae 7(1): 10. DOI: 10.3390/horticulturae7010010.
Ghasemzadeh A, Jaafar HZ, Rahmat A. 2016. Variation of the phytochemical constituents and antioxidant activities of Zingiber officinale var. rubrum Theilade associated with different drying methods and polyphenol oxidase activity. Molecules 21(6): 780. DOI: 10.3390/molecules21060780.
Ho L-H, Ramli NF, Tan T-C, Muhamad N, Haron MN. 2018. Effect of extraction solvents and drying conditions on total phenolic content and antioxidant properties of watermelon rind powder. Sains Malays 47(47): 99-107. DOI: 10.17576/jsm-2018-4701-12.
Jakubczyk A, Z?otek U, Rybczy?ska-Tkaczyk K. 2021. Influence of elicitation and drying methods on anti-metabolic syndrome, and antimicrobial properties of extracts and hydrolysates obtained from elicited lovage (Levisticum officinale Koch). Nutrients 13(12): 4365. DOI: 10.3390/nu13124365.
Kaveh M, Abbaspour-Gilandeh Y, Nowacka M. 2021. Comparison of different drying techniques and their carbon emissions in green peas. Chem Eng Process: Process Intensif 160: 108274. DOI: 10.1016/j.cep.2020.108274.
Khoo LW, Mediani A, Zolkeflee NKZ, Leong SW, Ismail IS, Khatib A, Shaari K, Abas F. 2015. Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochem Lett 14: 123-133. DOI: 10.1016/j.phytol.2015.09.015.
Kittibunchakul S, Hudthagosol C, Sanporkha P, Sapwarobol S, Suttisansanee U, Sahasakul Y. 2022. Effects of maturity and thermal treatment on phenolic profiles and in vitro health-related properties of sacha inchi leaves. Plants 11(11): 1515. DOI: 10.3390/plants11111515.
Kongstad KT, O?zdemir C, Barzak A, Wubshet SG, Staerk D. 2015. Combined use of high-resolution ?-glucosidase inhibition profiling and high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts. J Agric Food Chem 63(8): 2257-2263. DOI: 10.1021/jf506297k.
Ling ALM, Yasir S, Matanjun P, Abu Bakar MF. 2015. Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J Appl Phycol 27: 1717-1723. DOI: 10.1007/s10811-014-0467-3.
Liu H, Cao J, Jiang W. 2015. Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT - Food Sci Technol 63(2): 1042-1048. DOI: 10.1016/j.lwt.2015.04.052.
Liu Y, Sabadash SV, Duan Z. 2021. Effect of heat pump temperature on the physical properties, bioactive compounds and antioxidant capacity of beetroots. J Chem Technol 29(4): 595-604. DOI: 10.15421/jchemtech.v29i4.240470.
Liu Y, Zhang Z, Hu L. 2022. High efficient freeze-drying technology in food industry. Crit Rev Food Sci Nutr 62(12): 3370-3388. DOI: 10.1080/10408398.2020.1865261.
Maser WH, Maiyah N, Nagarajan M, Kingwascharapong P, Senphan T, Ali AMM, Bavisetty SCB. 2023. Effect of different extraction solvents on the yield and enzyme inhibition (a-amylase, a-glucosidase, and lipase) activity of some vegetables. Biodiversitas 24(6): 320-3331. DOI: 10.13057/biodiv/d240626.
Mittal A, Singh A, Benjakul S. 2023. ?-Amylase inhibitory activity of chitooligosaccharide from shrimp shell chitosan and its epigallocatechin gallate conjugate: kinetics, fluorescence quenching and structure–activity relationship. Food Chem 403: 134456. DOI: 10.1016/j.foodchem.2022.134456.
Mustafa I, Chin NL, Fakurazi S, Palanisamy A. 2019. Comparison of phytochemicals, antioxidant and anti-inflammatory properties of sun-, oven-and freeze-dried ginger extracts. Foods 8(10): 456. DOI: 10.3390/foods8100456.
Nair S, Mukne A. 2017. Assessment of chemical stability of constituents in thiosulfinate derivative-rich extract of garlic by a validated HPTLC method. Indian J Pharm Sci 79(3): 438-450. DOI: 10.4172/pharmaceutical-sciences.1000247.
Natesh H, Abbey L, Asiedu S. 2017. An overview of nutritional and antinutritional factors in green leafy vegetables. Hortic Int J 1(2): 00011.
Onwude DI, Hashim N, Janius R, Abdan K, Chen G, Oladejo AO. 2017. Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innov Food Sci Emerg Technol 43: 223-238. DOI: 10.1016/j.ifset.2017.08.010.
Onwude DI, Hashim N, Janius RB, Nawi NM, Abdan K. 2016. Modeling the thin?layer drying of fruits and vegetables: A review. Compr Rev Food Sci Food Saf 15(3): 599-618. DOI: 10.1111/1541-4337.12196.
Palmieri S, Pellegrini M, Ricci A, Compagnone D, Lo Sterzo C. 2020. Chemical composition and antioxidant activity of thyme, hemp and coriander extracts: A comparison study of maceration, Soxhlet, UAE and RSLDE techniques. Foods 9(9): 1221. DOI: 10.3390/foods9091221.
Sachdev D, Kumar V, Maheshwari PH, Pasricha R, Deepthi, Baghel N. 2016. Silver based nanomaterial, as a selective colorimetric sensor for visual detection of post harvest spoilage in onion. Sens Actuators B: Chem 228: 471-479. DOI: 10.1016/j.snb.2016.01.049.
Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, Balagurunathan R, Palvannan T. 2016. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J Photochem Photobiol B Biol 163: 69-76. DOI: 10.1016/j.jphotobiol.2016.08.005.
Shonte TT, Duodu KG, de Kock HL. 2020. Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves. Heliyon 6(5): e03938. DOI: 10.1016/j.heliyon.2020.e03938.
Sirichai P, Kittibunchakul S, Thangsiri S, On-Nom N, Chupeerach C, Temviriyanukul P, Inthachat W, Nuchuchua O, Aursalung A, Sahasakul Y, Charoenkiatkul S, Suttisansanee U. 2022. Impact of drying processes on phenolics and in vitro health-related activities of indigenous plants in Thailand. Plants 11(3): 294. DOI: 10.3390/plants11030294.
Stan M, Popa A, Toloman D, Dehelean A, Lung I, Katona G. 2015. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater Sci Semicond 39: 23-29. DOI: 10.1016/j.mssp.2015.04.038.
Stramarkou M, Papadaki S, Kyriakopoulou K, Krokida M. 2017. Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. J Appl Phycol 29(6): 2947-2960. DOI: 10.1007/s10811-017-1181-8.
Tan S, Ke Z, Chai D, Miao Y, Luo K, Li W. 2021. Lycopene, polyphenols and antioxidant activities of three characteristic tomato cultivars subjected to two drying methods. Food Chem 338: 128062. DOI: 10.1016/j.foodchem.2020.128062.
Tang X, Pikal MJ. 2004. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21: 191-200. DOI: 10.1023/B:PHAM.0000016234.73023.75.
Taranath TC, Patil BN, Santosh TU, Sharath BS. 2015. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.—a model approach. Environ Sci Pollut Res 22(11): 8611-8617. DOI: 10.1007/s11356-014-4043-9.
Zhang Y-J, Gan R-Y, Li S, Zhou Y, Li A-N, Xu D-P, Li H-B. 2015. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12): 21138-21156. DOI: 10.3390/molecules201219753.