Identification and molecular detection of Arbuscular Mycorrhizal Fungi colonized naturally in citrus roots in nurseries

##plugins.themes.bootstrap3.article.main##

YENNY SARIASIH
SITI SUBANDIYAH
SRI WIDYANINGSIH
TAHIR KHURSHID
JIANHUA MO

Abstract

Abstract. Sariasih Y, Subandiyah S, Widyaningsih S, Khurshid T, Mo J. 2023. Identification and molecular detection of Arbuscular Mycorrhizal Fungi colonized naturally in citrus roots in nurseries. Biodiversitas 24: 6283-6290. Citrus plants heavily depend on arbuscular mycorrhizal (AMF), a diverse collection of fungi. The objective of this study was to investigate the root colonization, spore density, spore morphology, and molecular identification of AMF colonizing four citrus root species: Japansche Citroen (Citrus limonia Osbeck.), Cleopatra mandarin (Citrus reshni), Salam (Fortunella japonica cv. "Salam"), and Rough Lemon (Citrus jambhiri). AMF was identified by observing spore morphology and molecular PCR methods using the group-specific primers of Glomeromycota, AML1/AML2. Based on the morphological observation, C. limonia was found with the highest root colonization (50%), followed by F. japonica cv Salam (44%), C. reshni (38%), and C. jambhiri (36%). The highest number of AMF spores was found on C. jambhiri rhizosphere soil, which had 1,379 spores/100 g of soil with the lowest percentage of root colonization. Three mycorrhizal genera were identified, with Funneliformis (syn. Glomus) being the most dominant genus, followed by Gigaspora and Acaulospora. The sequence of PCR products confirmed the highest similarity range from 83.7-99.0% to that of Funneliformis, followed by Acaulospora at a similarity range from 83.3-99.0% and found on all of the citrus species. The similarity sequence of the PCR products to that of Gigaspora ranged between 83.3-95.0%, which was only found on C. reshni and C. jambhiri.

##plugins.themes.bootstrap3.article.details##

References
Alimi, A. A., Adeleke, R., and Moteetee, A. 2021. Soil environmental factors shape the rhizosphere arbuscular mycorrhizal fungal communities in South African indigenous legumes (Fabaceae). Biodiversitas. 22:2466–2476.
Alizadeh, O. 2011. Mycorrhizal Symbiosis. Mycorrhizal Symbiosis. 3:273–281.
Antoniolli, Z. ., Facelli, E., O’Connor, P., Miller, D., Ophel-Keller, K., and Smith, S. . 2002. Spore Communities of Arbuscular Mycorrhizal Fungi and Mycorrhizal Associations in Different Ecosystems, South Australia Resumo: Comunidades De Esporos De Fungos Micorrízicos Arbusculares E Associação Micorrízica Em Diferentes Ecossistemas No Sul Da Austrá. Ci. Solo. 26:627–635.
Arofatullah, N. A., Kabirun, S., Fujiyama, K., and Widianto, D. 2019. Molecular identification and in vitro propagation of arbuscular mycorrhiza from tea plant rhizosphere. Curr. Res. Environ. Appl. Mycol. 9:92–102.
Back, M. M., Altmann, T., and Souza, P. V. D. de. 2016. Influence of arbuscular mycorrhizal fungi on the vegetative development of citrus rootstocks1. Pesqui. Agropecuária Trop. 46:407–412.
Beck, A., Haug, I., Oberwinkler, F., and Kottke, I. 2007. Structural characterization and molecular identification of arbuscular mycorrhiza morphotypes of Alzatea verticillata (Alzateaceae), a prominent tree in the tropical mountain rain forest of South Ecuador. Mycorrhiza. 17:607–625.
Bever, J. D. 2002. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil. 244:281–290.
Borriello, R., Lumini, E., Girlanda, M., Bonfante, P., and Bianciotto, V. 2012. Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol. Fertil. Soils. 48:911–922.
Crossay, T., Antheaume, C., Redecker, D., Bon, L., Chedri, N., Richert, C., et al. 2017. New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Sci. Rep. 7:1–16.
Escudero, V., and Mendoza, R. 2005. Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza. 15:291–299.
Gehlot, P., and Singh, J. 2015. Arbuscular mycorrhizal fungi, Glomus spp. (Glomeromycetes), associated with drought tolerant plants of the Indian Thar desert. Austrian J. Mycol. 24:15–23.
Gerdemann, J. W., and Nicolson, T. H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46:235–244 Available at: http://dx.doi.org/10.1016/S0007-1536(63)80079-0.
Gomes, E. A., Oliveira, C. A., Lana, U. G. P., Noda, R. W., Marriel, I. E., and de Souza, F. A. 2015. Arbuscular mycorrhizal fungal communities in the roots of maize lines contrasting for Al tolerance grown in limed and non-limed Brazilian oxisoil. J. Microbiol. Biotechnol. 25:978–987.
Hartmann, A., Schmid, M., van Tuinen, D., and Berg, G. 2009. Plant-driven selection of microbes. Plant Soil. 321:235–257.
Van Der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 396:69–72.
Jacott, C. N., Murray, J. D., and Ridout, C. J. 2017. Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop breeding. Agronomy. 7:1–18.
Koske, R. E., and Gemma, J. N. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92:486–488 Available at: http://dx.doi.org/10.1016/S0953-7562(89)80195-9.
Lee, J., Lee, S., and Young, J. P. W. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 65:339–349.
Lee, K. J., Lee, K. H., Tamolang-castillo, E., and Budi, S. W. 2009. Biodiversity_ spore density and root colonization of Arbuscular Mycorrhizal fungi at Expressway Cut-slopes in Korea.pdf. 98.
Montoliu-Nerin, M., Sánchez-García, M., Bergin, C., Kutschera, V. E., Johannesson, H., Bever, J. D., et al. 2021. In-depth Phylogenomic Analysis of Arbuscular Mycorrhizal Fungi Based on a Comprehensive Set of de novo Genome Assemblies. Front. Fungal Biol. 2:1–13.
Morgan, K., Rouse, R., and Ebel, R. 2016. Foliar applications of essential nutrients on growth and yield of ‘valencia’ sweet orange infected with huanglongbing. Hortscience A Publ. Am. Soc. Hortcultural Sci. 51.
Morton, J. B., and Msiska, Z. 2010. Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza. 20:483–496.
Munarti, Wulan, A., and Utami, A. 2019. EXPLORATION AND IDENTIFICATION OF ARBUSCULAR MYCORRHIZAL FUNGI FROM THE RHIZOSPHERE OF CHILI PLANTS (Capsicum Annuum L) IN BOGOR. J. Sci. Innovare. 1:50–53.
Octavianti, Ek. N., and Ermavitalini, D. 2014. 6871-20545-1-Pb. 3.
Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., and da Silva, G. A. 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus. 2:191–199.
Ortas, I. 2012. Mycorrhiza in Citrus.
Paz, C., Öpik, M., Bulascoschi, L., Bueno, C. G., and Galetti, M. 2021. Dispersal of Arbuscular Mycorrhizal Fungi: Evidence and Insights for Ecological Studies. Microb. Ecol. 81:283–292.
Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B., and Walker, C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. 23:515–531.
Schüßler, A., and Walker, C. 2010. A species list with new families and new genera. The Glomeromycota. :57.
Song, F., Pan, Z., Bai, F., An, J., Liu, J., Guo, W., et al. 2015. The scion/rootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus. Front. Microbiol. 6:1–11.
Sudová, R., Kohout, P., Rydlová, J., ?tvrtlíková, M., Suda, J., Vo?íšková, J., et al. 2020. Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. Fungal Ecol. 45.
Sun, X., Feng, J., and Shi, J. 2022. Stimulation of Hyphal Ramification and Sporulation in Funneliformis mosseae by Root Extracts Is Host Phosphorous Status-Dependent. J. Fungi. 8.
Susila, E., Rukmana, S., Sagita, O., Achmad, B. S., Maulina, F., Pertanian, P., et al. 2022. EXPLORATION AND MORPHOLOGY IDENTIFICATION OF SPORES. 6:20–30.
Tahat, M. M., . K., . S., and Othman, R. 2010. Mycorrhizal Fungi as a Biocontrol Agent. Plant Pathol. J. 9:198–207.
Toh, S. C., Lihan, S., Chuan, B., Yong, W., Tiang, B. R., Abdullahi, R., et al. 2018. Malaysian Journal of Microbiology selected plant roots and their rhizosphere soil environment. 14:335–343.
Velázquez, M. S., Fabisik, J. C., Barrera, M., Allegrucci, N., Valdés, F. E., Abarca, C. L., et al. 2020. Diversity and abundance of arbuscular mycorrhizal fungi (Glomeromycota) associated with ilex paraguarensis in Northeastern Argentina. Rev. Biol. Trop. 68:1231–1240.
Willis, A., Rodrigues, B. F., and Harris, P. J. C. 2013. The Ecology of Arbuscular Mycorrhizal Fungi. CRC. Crit. Rev. Plant Sci. 32:1–20.
Wu, Q. S., and Zou, Y. N. 2012. Evaluating effectiveness of four inoculation methods with arbuscular mycorrhizal fungi on trifoliate orange seedlings. Int. J. Agric. Biol. 14:266–270.

Most read articles by the same author(s)