Podia histology and ultrastructure of tropical sea cucumber Phyllophorus sp. (Phyllophoridae) and Colochirus quadrangularis (Cucumaridae) from Madura Strait, Indonesia

##plugins.themes.bootstrap3.article.main##

DWI WINARNI
SIFERA ANGGITA ERIDIANTI
LISTIJANI SUHARGO
FIRAS KHALEYLA
ISMILIANA WIRAWATI

Abstract

Abstract. Winarni D, Eridianti SA, Suhargo L, Khaleyla F, Wirawati I. 2023. Podia histology and ultrastructure of tropical sea cucumber Phyllophorus sp. (Phyllophoridae) and Colochirus quadrangularis (Cucumaridae) from Madura Strait, Indonesia. Biodiversitas 24: 5685-5692. Phyllophorus sp. and Colochirus quadrangularis are sea cucumber species found in Madura Strait, East Java, Indonesia. Both species possess distinctive podia structures, which are protrusions on their body walls resembling spines. These structures serve as tube feet for movement (ventral podia) and sensory organs (dorsal papillae). This research aimed to compare the podia structures of Phyllophorus sp. and Colochirus quadrangularis. Five samples of each species were collected from the Madura Strait. Histological slides were prepared for the papillae (dorsal) and podia (ventral) on the anterior, median, and posterior body sections. Simultaneously, an examination of the ultrastructure was conducted using a scanning electron microscope (SEM). Analysis revealed differences between the podia of the two species. Phyllophorus sp. papillae had semi-flat tips, were non-suckered (SFNS), and exhibited squamous to short columnar epithelia, while their tube feet had flat tips, were non-suckered, and had columnar epithelia. Papillae were denser than tube feet. Conversely, C. quadrangularis papillae were pointed and non-suckered (PNS), and tube feet were flat and non-suckered (FNS). Notably, ossicle-dense areas in C. quadrangularis papillae had a pyramidal shape. In summary, the histology and ultrastructure of podia in these species displayed significant differences, highlighting their unique characteristics. They also imply to the adaptation biology of sea cucumber in Indonesian waters.

##plugins.themes.bootstrap3.article.details##

References
Amin MHF, Syukriya AJ, Irawan B, Pratiwi AI, Muttaqin Z, Winarni D. 2020. Taxonomic redescription of Colochirus quadrangularis (Echinodermata: Holothuroidea) from Surabaya Coastal Waters (East Java, Indonesia) with notes on new distinctive haplogroup of COI gene. Ecology, Environment and Conservation Journal 26(4): 1617-1622.
Baker-Médard M, Ohl KN. 2019. Sea cucumber management strategies: challenges and opportunities in a developing country context. Environmental Conservation 46(4): 267–277. DOI: 10.1017/S037689291900018.
Blowes LM, Egertová M, Liu Y, Davis GR, Terrill NJ, Gupta HS, Elphick MR. 2017. Body Wall Structure in the Starfish Asterias Rubens. Journal of Anatomy 231(3): 325-341. DOI: 10.1111/joa.12646.
Clark EG, Bullar BS, Darroch SAF, Briggs DEG. 2017. Water vascular system architecture in an Ordovician ophiuroid. Biology Letters 13:1-5. DOI:https://doi.org/10.1098/rsbl.2017.0635
Desmelati, Sumarto, Dewita, Dahlia, Syafrijal, Sari PA. 2020. Determination of Nano-Collagen Quality from Sea Cucumber Holothuria scabra. IOP Conf. Series: Earth and Environmental Science 430: 1-11. DOI 10.1088/1755-1315/430/1/012005.
Gianasi BL, Hamel J, Montgomery EM, Sun J, Mercier A. 2021. Current knowledge on the biology, ecology, and commercial exploitation of the sea cucumber Cucumaria frondosa. Reviews in Fisheries Science & Aquaculture 29(4): 582-653. DOI 10.1080/23308249.2020.1839015
Guerrero AG, Forrero AR. 2018. Histological characterization of skin and radial bodies of two species of genus Isostichopus (Echinodermata: Holothuroidea). Journal of Aquatic Research 44(2): 155-161. DOI: 10.1016/j.ejar.2018.06.003.
Hossain A, Dave D, Shahidi F. 2022. Antioxidant potential of sea cucumbers and their beneficial effects on human health. Marine Drugs 20(8): 521. DOI 10.3390/md20080521.
Khatulistiani TS, Dewi AS, Yasman. 2022. Detailed description of scanning electromagnetic microscope (SEM) of the Holothuria scabra’s ossicles (Holothuria:Echinodermata) collected from Pesawaran Waters, Lampung, Indonesia. Biodiversitas. 23(7):3697-3704. DOI: 10.13057/biodiv/d230747
Li P, Lu W, Chan Y, Ko W, Jung C, Huynh DTL, Ji Y. 2020. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture.
McCurley RS, Kier WM. 1995. The Functional Morphology of Starfish Tube Feet: The Role of a Crossed-Fiber Helical Array in Movement. Biol Bull 188(2): 197-209. DOI: 10.2307/1542085.
Mo J., Prévost SF, Blowes L. M., Egertová, M., Terrill, N. J., Wang, W., Elphick, M. R., and Gupta, H. S. 2016. Interfibrillar Stiffening of Echinoderm Mutable Collagenous Tissue Demonstrated at the Nanoscale. Proceedings of the National Academy of Sciences, 113(42): E6362–E6371. doi:10.1073/pnas.1609341113.
Mohsen M, Yang H. 2021. Sea Cucumbers: Aquaculture, Biology, and Ecology. Academic Press, Elsevier, London.
Purcell SW, Conand C, Uthicke S, Byrne M. 2016. Ecological Roles of Exploited Sea Cucumbers. Oceanography and Marine Biology: An Annual Review 54: 367–386. DOI: 10.1201/9781315368597-8.
Ru R, Guo Y, Mao J, Yu Z, Huang W, Cao X, Hu H, Meng M, Yuan L. 2022. Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug. Nutrients 14(4): 786. DOI 10.3390/nu14040786.
Santos R, Haesaerts D, Jangoux M, Flammang P. 2005. Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea). Journal of Morphology 263: 259-269.
Setianingsih H, Miranda S, Tjahjono RVJ, Utami PD. 2021. Lethal concentration of Golden Sea Cucumber killed Vibrio cholerae. Bali Medical Journal 10(2): 708–712. DOI: 10.15562/bmj.v10i2.2533.
Setyastuti A, Wirawati I, Permadi S, Vimono IB. 2019. Indonesian Trepang: Species, Distribution, and Economic Value. PT. Media Sains Nasional, Bogor.
Siahaan EA, Pangestuti R, Munandar H, Kim S. 2017. Cosmeceuticals Properties of Sea Cucumbers: Prospects and Trends. Cosmetics 4(3): 26. DOI: 10.3390/cosmetics4030026.
Sun J, Hamel JF, Mercier A. 2018. Influence of flow on locomotion, feeding behaviour and spatial distribution of a suspension-feeding sea cucumber. Journal of Experimental Biology 221(20): jeb189597. DOI: 10.1242/jeb.189597
Winarni D, Mochammad A, Endang DM, Alfinda NK. 2014. Community structure of Sea Cucumber on the east coast of Surabaya. Journal of Mathematics and Science 17(1): 1-6.
Wirawati I, Jasmadi, Pratiwi R, Widyastuti E, Ibrahim PS. 2021. Commercial sea cucumber trading status in Indonesia. AACL Bioflux 14(6): 3204-3216.
Zhan,Y, Lin K, Ge C, Che J, Li Y, Cui D, Pei Q, Liu L, Song, J, Zhang W, Chang Y. 2019. Comparative transcriptome analysis identifies genes associated with papilla development in the sea cucumber Apostichopus japonicus. Comparative Biochemistry and Physiology – Part D. 29:255-263. https://doi.org/10.1016/j.cbd.2018.12.009
Zhou X, Cui J, Liu S, Kong D, Sun H, Gu C, Wang H, Qiu X, Chang Y, Liu Z, Wang X. 2016. Comparative transcriptome analysis of papilla and skin in the sea cucumber Apostichopus japonicus. PeerJ 4: e1779. DOI: 10.7717/peerj.1779.
Zhu X, Ni P, Sturrock M, Wang Y, Ding J, Chang Y, Hu J, Bao Z. 2022. Fine-mapping and association analysis of candidate genes for papilla number in sea cucumber Aposticopus japonicus. Marine Life Science and Technology. 3:343-355. https://doi.org/10.1007/s42995-022-00139-w