Morpho-physiological seed diversity and viability of Indonesian cowpea (Vigna unguiculata)

##plugins.themes.bootstrap3.article.main##

ENY WIDAJATI
MUHAMAD SYUKUR
RIDWAN DIAGUNA
OKTI SYAH ISYANI PERMATASARI
ARYA WIDURA RITONGA
ZULFIKAR DAMARALAM SAHID
GAGAD RESTU PRATIWI
ANDI NADIA NURUL LATHIFA HATTA

Abstract

Abstract. Widajati E, Syukur M, Diaguna R, Permatasari OSI, Ritonga AW, Sahid ZD, Pratiwi GR, Hatta ANNL. 2023. Morpho-physiological seed diversity and viability of Indonesian cowpea (Vigna unguiculata). Biodiversitas 24: 5319-5327. Cowpea is a legume with a potential nutritional content almost equivalent to soybeans; it can be developed as a substitute agent for raw materials for food processing. One of the factors in obtaining high cowpea production is to use of quality seeds. Our study aimed to evaluate the performance and morpho-physiological correlations and viability of cowpea seed collections from IPB University Bogor and the Indonesian Research Institute of Legume. We used ten genotypes of cowpea, which had superior seed information. The results showed that the ten cowpea genotypes had superior morpho-physiological and seed viability. The seed germination percentage was categorized as medium-high (>60%). Eight cowpea genotypes were grouped into one major group based on morpho-physiological characteristics and viability. Furthermore, positive correlations were found between the observed variables of seed viability (seed germination, seed growth speed, and seed vigor index). Our research results are useful as a source of genetic diversity for plant breeders in developing new superior varieties in the future. In addition, agronomists can use this information to plant cowpeas based on planting location.

##plugins.themes.bootstrap3.article.details##

References
Abebe BK and Alemayehu MT. 2022. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research. doi: https://doi.org/10.1016/j.jafr.2022.100383.
Aliyu OM, Tiamiyu AO, Usman M, Abdulkareem YF. 2022. Variance components, correlation and path analyses in cowpea (Vigna unguiculata L., Walp). Journal of Crop Science and Biotechnology. doi: https://doi.org/10.1007/s12892-021-00121-5.
Arteaga S, Yabor L, Díez MJ, Prohens J, Boscaiu M, Vicente O. 2020. The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes. Agronomy. doi: https://doi.org/10.3390/agronomy10060817.
Ciurescu G, Vasilachi A. Ropot? M. 2022. Effect of dietary cowpea (Vigna unguiculata [L] Walp) and chickpea (Cicer arietinum L.) seeds on growth performance, blood parameters and breast meat fatty acids in broiler chickens. Italian Journal of Animal Science 21 (1): 97-105. doi: https://doi.org/10.1080/1828051X.2021.2019620.
Costa MCD, Cooper K, Hilhorst HW, Farrant JM. 2017. Orthodox seeds and resurrection plants: two of a kind?. Plant Physiology. 175: 589-599. doi: https://doi.org/10.1104/pp.17.00760.
Cruz DPD, Gravina GDA, Vivas M, Entringer GC, Souza YPD, et al. 2021. Combined selection for adaptability, genotypic stability and cowpea yield from mixed models. Ciência Rural. 51. doi: https://doi.org/10.1590/0103-8478cr20200540.
da Cruz DP, de Amaral Gravina G, Vivas M, Entringer GC, Rocha RS, et al. 2020. Analysis of the phenotypic adaptability and stability of strains of cowpea through the GGE Biplot approach. Euphytica. 216. doi: https://doi.org/10.1007/s10681-020-02693-9.
de Vitis M, Hay FR, Dickie JB, Trivedi C, Choi J, Fiegener R. 2020. Seed storage: maintaining seed viability and vigor for restoration use. Restoration Ecology. 28. doi: https://doi.org/10.1111/rec.13174.
Ebone LA, Caverzan A, Chavarria G. 2019. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry. 145: 34-42. doi: https://doi.org/10.1016/j.plaphy.2019.10.028.
Erdo?an B and Özdestan?Ocak Ö. 2022. Determination the effects of pumpkin and rosehip seed oils on heterocyclic aromatic amine formation in meatballs by high?performance liquid chromatography. Journal of Food Processing and Preservation. 46. doi: https://doi.org/10.1111/jfpp.16299.
Fattahi B, Arzani K, Souri MK, Barzegar M. 2019. Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Industrial Crops and Products. 138. doi: https://doi.org/10.1016/j.indcrop.2019.111584.
Gerrano AS, Jansen Van Rensburg WS, Venter SL, Shargie NG, Amelework BA, Shimelis HA, Labuschagne MT. 2019. Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agriculturae Scandinavica, Section B—Soil and Plant Science. 69 (2): 155-166. doi: https://doi.org/10.1080/09064710.2018.1520290.
Haq N, Ilyas S, Suhartanto MR, Purwanto YA. 2023. Dormancy behaviour and effectiveness of dormancy breaking methods in cucumber seeds (Cucumis sativus). Seed Science and Technology. 51: 205-219. doi: https://doi.org/10.15258/sst.2023.51.2.06.
Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, Liyanage R. 2018. Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture. 98: 4793-4806. doi: https://doi.org/10.1002/jsfa.9074.
Kibar H and Kibar B. 2019. Changes in some nutritional, bioactive and morpho-physiological properties of common bean depending on cold storage and seed moisture contents. Journal of Stored Products Research. doi: https://doi.org/10.1016/j.jspr.2019.101531.
Lapaz ADM, Santos LFDM, Yoshida CHP, Heinrichs R, Campos M, Reis ARD. 2019. Physiological and toxic effects of selenium on seed germination of cowpea seedlings. Bragantia. 78: 498-508. doi: https://doi.org/10.1590/1678-4499.20190114.
Lian J, Wu J, Xiong H, et al. 2020. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of hazardous materials. 385. doi: https://doi.org/10.1016/j.jhazmat.2019.121620.
Matilla AJ. 2021. The orthodox dry seeds are alive: A clear example of desiccation tolerance. Plants. 11. doi: https://doi.org/10.3390/plants11010020.
Mekonnen TW, Gerrano AS, Mbuma NW, Labuschagne MT. 2022. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: progress, opportunities, and challenges. Plants. 11. doi: https://doi.org/10.3390/plants11121583.
Michalak M, Plitta?Michalak BP, Nadarajan J, Colville L. 2021. Volatile signature indicates viability of dormant orthodox seeds. Physiologia Plantarum. 173: 788-804. doi: https://doi.org/10.1111/ppl.13465.
Momanyi D, Owino W, Makokha A. 2020. Formulation, nutritional and sensory evaluation of baobab based ready-to-eat sorghum and cowpea blend snack bars. Scientific African. 7. doi: https://doi.org/10.1016/j.sciaf.2019.e00215.
Mu Q, Su H, Zhou Q, et al. 2022. Effect of ultrasound on functional properties, flavor characteristics, and storage stability of soybean milk. Food Chemistry. 381. doi: https://doi.org/10.1016/j.foodchem.2022.132158.
N’goran CA, Petit J, N’Guessan AA, Gonnety JT, Scher J. 2023. Improvement of the production process and the sensory and nutritional quality of m’bahou, a traditional plantain semolina, enriched with soy or cowpea. International Journal of Food Science & Technology. doi: https://doi.org/10.1111/ijfs.16496.
Nunes LRDL, Pinheiro PR, Silva JBD, Dutra AS. 2020. Effects of ascorbic acid on the germination and vigour of cowpea seeds under water stress. Revista Ciência Agronômica. 51. doi: https://doi.org/10.5935/1806-6690.20200030.
Owade JO, Abong G, Okoth M, Mwang’ombe AW. 2020. A review of the contribution of cowpea leaves to food and nutrition security in East Africa. Food Science Nutrition. 8: 36-47. doi: https://doi.org/10.1002/fsn3.1337.
Patel JK and Nandan MKB. 2023. Assessment of genetic analysis and correlation studies in released varieties of linseed (Linum usitatissimum L.) from IGKV. Pharma Journal. https://www.thepharmajournal.com/archives/2023/vol12issue6/PartBG/12-6-392-365.pdf
Peyrano F, de Lamballerie M, Avanza MV, Speroni F. 2017. Calorimetric study of cowpea protein isolates. Effect of calcium and high hydrostatic pressure. Food Biophysics. 12: 374-382. doi: https://doi.org/10.1007/s11483-017-9493-4.
Plitta-Michalak BP, Naskr?t-Barciszewska MZ, Barciszewski J, Chmielarz P, Michalak M. 2021. Epigenetic integrity of orthodox seeds stored under conventional and cryogenic conditions. Forests. 12. doi: https://doi.org/10.3390/f12030288.
Pra?ak R, ?wi?ci?o A, Krzepi?ko A, Micha?ek S, Arczewska M. 2020. Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture. 10. doi: https://doi.org/10.3390/agriculture10080312.
Rahmawati D, Astawan M, Putri SP, Fukusaki E. 2021. Gas chromatography-mass spectrometry-based metabolite profiling and sensory profile of Indonesian fermented food (tempe) from various legumes. Journal of Bioscience and Bioengineering. 132: 487-495. doi: https://doi.org/10.1016/j.jbiosc.2021.07.001.
Rego CHQ, Cicero SM, França-Silva F, Guilhien Gomes-Junior F. 2021. Assessing the vigor of cowpea seeds using the Vigor-S software. Journal of Seed Science. 43. doi: https://doi.org/10.1590/2317-1545v43244858.
Rehman A, Mustafa N, Du X, Azhar MT. 2020. Heritability and correlation analysis of morphological and yield traits in genetically modified cotton. Journal of Cotton Research. 3: 1-9. doi: https://doi.org/10.1186/s42397-020-00067-z.
Ren D, Yang H, Zhou L, Yang Y, Liu W, Hao X, Pan P. 2021. The Land-Water-Food-Environment nexus in the context of China's soybean import. Advances in Water Resources. 151. doi: https://doi.org/10.1016/j.advwatres.2021.103892
Rongsangchaicharean T, Ruangwong K, Onwimol D, Tephiruk N, Suwannarat S, Srisonphan S. 2022. Effect of dielectric barrier discharge plasma on rice (Oryza sativa L.) seed hydration and hygroscopicity. Journal of Physics D: Applied Physics. 55. doi: https://iopscience.iop.org/article/10.1088/1361-6463/ac791d.
Sreedevi S, Kumar KA, Amritha VV, John S. 2023. Correlation analysis of plant growth regulators during development and germination in the orthodox, non-dormant seeds of Vigna unguiculata. Russian Journal of Plant Physiology. 70. doi: https://doi.org/10.1134/S1021443722602567.
Stanisavljevic R, Pošti? D, Štrbanovi? R, et al. 2020. Effect of seed storage on seed germination and seedling quality of Festulolium in comparison with related forage grasses. Tropical Grasslands-Forrajes Tropicales. 8: 125-132. doi: http://dx.doi.org/10.17138/TGFT(8)125-132.
Suhi AA, Mia S, Khanam S, Mithu MH, et al. 2022. How does maize-cowpea intercropping maximize land use and economic return? A field trial in Bangladesh. Land. 11. doi: https://doi.org/10.3390/land11040581.
Syukur M, Maharijaya A, Nurcholis W, Ritonga AW, et al. 2023. Biochemical and yield component of hybrid chili (Capsicum annuum L.) resulting from full diallel crosses. Horticulturae. 9. doi: https://doi.org/10.3390/horticulturae9060620.
Syukur M, Sahid ZD, Sobir S, Maharijaya A, Ritonga AW, et al. 2022. Morpho-agronomic performances of bird pepper (Capsicum annuum) lines under varying agro-ecological locations in Indonesia. Biodiversitas Journal of Biological Diversity. 23. doi: https://doi.org/10.13057/biodiv/d230952.
Wahyudi A and Syukur M. 2021. Multi-location evaluation of yield component character and proximate analysis of cowpea grown in Lampung Province, Indonesia. Biodiversitas Journal of Biological Diversity. 22. doi: https://doi.org/10.13057/biodiv/d221015.

Most read articles by the same author(s)

1 2 3 4 > >>