TLC-fingerprinting and chemometrics for identification of Curcuma xanthorrhiza from different geographical origins in Indonesia

##plugins.themes.bootstrap3.article.main##

KARTINI KARTINI
SYAHNA S. SABATINI
NINDYA M. HARIDSA
NIKMATUL I. E. JAYANI
FINNA SETIAWAN
MOCHAMMAD A. HADIYAT

Abstract

Abstract. Kartini K, Sabatini SS, Haridsa NM, Jayani NIE, Setiawan F, Hadiyat MA. 2023. TLC-fingerprinting and chemometrics for identification of Curcuma xanthorrhiza from different geographical origins in Indonesia. Biodiversitas 24: 6557-6566. Geographical origin is an important parameter that influences the quality of herbal medicine. The fingerprint of herbal plants is expressed as chemical compounds contributing to said quality. Curcuma xanthorrhiza, popular as java turmeric, is extensively used in Indonesian traditional medicine. This study aimed to validate and develop a Thin Layer Chromatography (TLC) fingerprint of C. xanthorrhiza, followed by chemometric techniques to classify C. xanthorrhiza rhizomes from 15 regions in Indonesia. Under selected TLC conditions (i.e., stationary phase: TLC plate Silica gel 60 GF254, mobile phase: dichloromethane, chloroform, and ethanol (10: 10: 1), detection: vanillin-sulfuric acid reagent), C. xanthorrhiza produced five zones of the compound. Extracts were stable both on the TLC plate and in the extract solution during chromatography and within 60 minutes after derivatization. In terms of precision, the chromatogram meets the requirement of intraday precision. Chemometric analysis with Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that the samples of C. xanthorrhiza from 15 regions in Indonesia were grouped into five clusters based on the similarity of the chemical compounds, namely cluster 1 (Tawangmangu, Bangkalan, Kediri, and Surabaya); cluster 2 (Batu, Sragen, Tulungagung, Pasuruan, Blitar, and Lombok Tengah); cluster 3 (Ngawi); cluster 4 (Gresik); and cluster 5 (Bojonegoro, Banyuwangi, and Palangkaraya). The TLC fingerprinting with chemometrics on C. xanthorrhiza rhizome is useful for quality control based on geographic origin and authenticity identification.

##plugins.themes.bootstrap3.article.details##

References
Angeline E, Susidarti RA, Rohman A. 2019. Rapid authentication of turmeric powder adulterated with Curcuma Zedoaria and Curcuma Xanthorrhiza using FTIR-ATR spectroscopy and chemometrics. International Journal of Applied Pharmaceutics 11(5): 216-221.
Borges CN, Bruns RE, Almeida AA, Scarminio IS. 2007. Mixture–mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis. Analytica Chimica Acta 595(1-2): 28-37. https://doi.org/10.1016/j.aca.2007.02.067.
Cahyono B, Ariani J, Failasufa H, Suzery M, Susanti S, Hadiyanto H. 2019. Extraction of homologous compounds of curcuminoid isolated from temulawak (Curcuma xanthorriza Roxb.) plant. RASAYAN J. Chem. 12(1): 7-13. http://dx.doi.org/10.31788/RJC.2019.1213092.
Delaroza F, Scarminio IS. 2008. Mixture design optimization of extraction and mobile phase media for fingerprint analysis of Bauhinia variegata L. Journal of Separation Science 31(6-7): 1034-1041. https://doi.org/10.1002/jssc.200700389.
Hawry? A, Hajnos-Stolarz A, Hawry? M, Bogucka-Kocka A. 2019. TLC fingerprint with chemometrics and antioxidant activity of selected lichens. Journal of Liquid Chromatography & Related Technologies 42(9-10): 302-310. https://doi.org/10.1080/10826076.2019.1585629.
Hawry? A, Hawry? M, Litwi?czuk W, Bogucka-Kocka A. 2020. Thin-layer chromatographic fingerprint of selected Paulownia species with chemometrics and antioxidant activity. Journal of Liquid Chromatography & Related Technologies 43(11-12): 367-374. https://doi.org/10.1080/10826076.2020.1725552.
Hawry? A, Ziobro A, ?wieboda R, Hawry? M, Waksmundzka-Hajnos M. 2016. TLC profiles of selected Cirsium species with chemometrics in construction of their fingerprints. Journal of Chromatographic Science 54(7): 1096-1104. https://doi.org/10.1093/chromsci/bmw064.
Huang W-P, Tan T, Li Z-F, Ouyang H, Xu X, Zhou B, Feng Y-L. 2018. Structural characterization and discrimination of Chimonanthus nitens Oliv. leaf from different geographical origins based on multiple chromatographic analysis combined with chemometric methods. Journal of Pharmaceutical and Biomedical Analysis 154: 236-244. https://doi.org/10.1016/j.jpba.2018.02.020.
Lechtenberg M, Quandt B, Nahrstedt A. 2004. Quantitative determination of curcuminoids in Curcuma rhizomes and rapid differentiation of Curcuma domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques 15(3): 152-158. https://doi.org/10.1002/pca.759.
Lim TK 2012. Edible medicinal and non-medicinal plants, Springer.
Liu W, Yin D, Li N, Hou X, Wang D, Li D, Liu J. 2016. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Reports 6(1): 1-18. https://doi.org/10.1038/srep28591.
Lukitaningsih E. 2020. In vivo antioxidant activities of Curcuma longa and Curcuma xanthorrhiza. Food Research 4(1): 13-19. https://doi.org/10.26656/fr.2017.4(1).172.
Ma N, Ding Y, Zhang Y, Zhang T, Yi Y, Wang B. 2018. Chemical fingerprinting and quantification of Chinese cinnamomi cortex by ultra high performance liquid chromatography coupled with chemometrics methods. Molecules 23(9): 2214. https://doi.org/10.3390/molecules23092214.
Nurcholis W, Ambarsari L, Sari N, Darusman LK. Curcuminoid contents, antioxidant and anti-inflammatory activities of Curcuma xanthorrhiza RoxB. and Curcuma domestica Val. promising lines from Sukabumi of Indonesia. Prosiding Seminar Nasional Kimia Unesa, 2012. C284-C292.
Nurcholis W, Munshif AA, Ambarsari L. 2018. Xanthorrhizol contents, ?-glucosidase inhibition, and cytotoxic activities in ethyl acetate fraction of Curcuma zanthorrhiza accessions from Indonesia. Revista Brasileira de Farmacognosia 28: 44-49. https://doi.org/10.1016/j.bjp.2017.11.001.
Nurrulhidayah A, Rafi M, Lukitaningsih E, Widodo H, Rohman A, Windarsih A. 2020. Review on in vitro antioxidant activities of Curcuma species commonly used as herbal components in Indonesia. Food Research 4(2): 286-293. https://doi.org/10.26656/fr.2017.4(2).163.
Pramono S, Arifah FH, Pribadi FH, Nugroho AE. 2018. Hepatoprotective activity of Curcuma xanthorrhiza Roxb. paracetamol-induced liver damage in rats and correlation with their chemical compounds. Thai Journal of Pharmaceutical Sciences (TJPS) 42(4): 188-195.
Rafi M, Rohaeti E, Miftahudin A, Darusman LK. 2011. Differentiation of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar by thin layer chromatography fingerprint analysis. Indonesian Journal of Chemistry 11(1): 71-74. https://doi.org/10.22146/ijc.21423.
Rafi M, Wulansari L, Heryanto R, Darusman LK, Lim LW, Takeuchi T. 2015. Curcuminoid’s content and fingerprint analysis for authentication and discrimination of Curcuma xanthorrhiza from Curcuma longa by high-performance liquid chromatography-diode array detector. Food Analytical Methods 8(9): 2185-2193. https://doi.org/10.1007/s12161-015-0110-1.
Rahmat E, Lee J, Kang Y. 2021. Javanese Turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, phytochemistry, biotechnology, and pharmacological activities. Evidence-Based Complementary and Alternative Medicine 2021: 1-15. https://doi.org/10.1155/2021/9960813.
Reich E, Schibli A 2007. High-performance thin-layer chromatography for the analysis of medicinal plants, New York, Thieme.
Rohman A, Wijayanti T, Windarsih A, Riyanto S. 2020. The authentication of Java turmeric (Curcuma xanthorrhiza) using thin Layer chromatography and 1H-NMR based-metabolite fingerprinting coupled with multivariate analysis. Molecules 25(17): 3928. https://doi.org/10.3390/molecules25173928.
Rosidi A. 2020. The difference of curcumin and antioxidant activity in Curcuma xanthorrhiza at different regions. Journal of Advanced Pharmacy Education & Research 10(1): 14-18.
Salim Z, Munadi E 2017. Info komoditi tanaman obat, Jakarta, Badan Pengkajian dan Pengembangan Perdagangan Kementerian Perdagangan Republik Indonesia.
Shen T, Yu H, Wang Y-Z. 2019. Assessing geographical origin of Gentiana rigescens using untargeted chromatographic fingerprint, data fusion and chemometrics. Molecules 24(14): 2562. https://doi.org/10.3390/molecules24142562.
Subositi D, Wahyono S. 2019. Study of the genus Curcuma in Indonesia used as traditional herbal medicines. Biodiversitas Journal of Biological Diversity 20(5). https://doi.org/10.13057/biodiv/d200527.
Sun L-L, Wang M, Zhang H-J, Liu Y-N, Ren X-L, Deng Y-R, Qi A-D. 2018. Comprehensive analysis of Polygoni Multiflori Radix of different geographical origins using ultra-high-performance liquid chromatography fingerprints and multivariate chemometric methods. Journal of Food and Drug Analysis 26(1): 90-99. https://doi.org/10.1016/j.jfda.2016.11.009.
Tan T, Zhang J, Xu X, Huang WP, Luo Y. 2018. Geographical discrimination of Glechomae Herba based on fifteen phenolic constituents determined by LC–MS/MS method combined with chemometric methods. Biomedical Chromatography 32(8): e4239. https://doi.org/10.1002/bmc.4239.
Tistaert C, Dejaegher B, Heyden YV. 2011. Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Analytica Chimica Acta 690(2): 148-161. https://doi.org/10.1016/j.aca.2011.02.023.
Wall PE 2007. Thin-layer chromatography: a modern practical approach, Cambridge, Royal Society of Chemistry.
Windarsih A, Nisa K, Indrianingsih A, Darsih C, Handayani S, Wulanjati M, Rosyida V, Wijayanti T, Rohman A. The use of 1H-NMR spectroscopy and chemometrics of pattern recognition for authentication of Curcuma xanthorrhiza adulterated with Zingiber montanum. IOP Conference Series: Materials Science and Engineering, 2021. IOP Publishing, 012050. https://doi.org/10.1088/1757-899X/1011/1/012050
Yudthavorasit S, Wongravee K, Leepipatpiboon N. 2014. Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to geographical origin using HPLC-DAD combined with chemometrics. Food Chemistry 158: 101-111. https://doi.org/10.1016/j.foodchem.2014.02.086.