Antibacterial activity of Paederia foetida leaves using two different extraction procedures against pathogenic bacteria




Abstract. Yunita M, Ohiwal M, Elfitrasya MZ, Rahawarin H. 2023. Antibacterial activity of Paederia foetida leaves using two different extraction procedures against pathogenic bacteria. Biodiversitas 24: 5920-5927. The objective of this study was to compare the effectiveness of the extraction methods between maceration and infundation of Paederia foetida (Linn.) leaves in suppressing the growth of Staphylococcus aureus and Escherichia coli with concentrations of 10, 25, 50, 75, and 100% using the disc-diffusion method. While phytochemical testing was performed by decoction method. The results of this study revealed that the macerated extract was able to inhibit both S. aureus and E. coli at all concentrations with the inhibition zones varied ranging from 5.8 ± 0.85 - 20.43 ± 0.06 mm and 4.9 ± 0.57 - 18.18 ± 0.67 mm, respectively. While the leaf infusion obtained from infundation method was found to be less able to inhibit both pathogenic bacteria (<1 mm). Results of phytochemical testing confirmed the result of inhibitory testing where macerated extract contained alkaloids, saponins, steroids, terpenoids, and tannins, while the leaf infusion only contained alkaloids and terpenoids. It can be concluded that macerated extracts of P. foetida leaves were far more effective in inhibiting the growth of S. aureus and E. coli. The study implies that the leaf extract of P. foetida can be considered and developed into a strong antibacterial in the future through good and appropriate bioprospecting.


Assis LM, Nedeljkovi? M, Dessen A. 2017. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 4(1): 1-14. DOI: 10.1016/j.drup.2017.03.001.
Balakrishna T, Vidyadhara S, Sashidhar R, Ruchitha B, Venkata PE. 2016. A review on extraction techniques. Indo American J Pharm Sci 3(8): 1-12.
Borges A, José H, Homem V, Simões M. 2020. Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from acacia dealbata and olea europaea. Antibiotics 9(2): 1-19. DOI: 10.3390/antibiotics9020048.
Cankaya TII, Somuncuoglu EI. 2021. Potential and prophylactic use of plants containing saponin-type compounds as antibiofilm agents against respiratory tract infections. Evid Based Complement Alternat Med 2021(1): 1-14. DOI: 10.1155/2021/6814215.
Cecille M, Vicencio G. 2021. Antibacterial efficacy of leaf extracts of Paederia foetida Linnaeus. J Chem Res Adv 02(01): 1-5.
Chaaban H, Ioannou I, Chebil L, Slimane M, Gérardin C, Paris C, Charbonnel C, Chekir L, Ghoul M. 2017. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J Food Process Preserv 41(5): 1-12. DOI: 10.1111/jfpp.13203.
Cong Y, Yang S, Rao X. 2020. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res 21(1):169-176. DOI: 10.1016/j.jare.2019.10.005.
Davis WW, Stout TR. 1971. Disc plate method of microbiological antibiotic assay I. Factors influencing variability and error. Appl Microbiol 22(3): 659-665. DOI: 10.1128/am.22.4.659-665.1971.
Jeyaseelan CE, Jashothan JPT. 2012. In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pac J Trop Biomed 2(9): 717–721. DOI: 10.1016/S2221-1691(12)60216-0.
Elboughdiri N. 2018. Effect of time, solvent-solid ratio, ethanol concentration and temperature on extraction yield of phenolic compounds from olive leaves. Eng, Technol & Applied Sci Res 8(2): 2805-2808. DOI: 10.48084/etasr.1983.
Ernilasari Walil K, Fitmawati, Roslim DI, Zumaidar, Saudah, Rayhannisa. 2021. Antibacterial activity of leaves, flowers, and fruits extract of etlingera elatior from nagan raya district, indonesia against Escherichia coli and Staphylococcus aureus. Biodiversitas 22(10): 4457–4464. DOI: 10.13057/biodiv/d221039.
Diniatik, Anggraeni RS. Antibacterial (Staphylococcus aureus and Escherichia coli) and antifungal (Saccharomyces cerevisiae) activity assay on nanoemulsion formulation of ethanol extract of mangosteen leaves (Garcinia mangostana l.) as fruit preservative. J Food Pharm Sci 9(1): 351-365. DOI: 10.22146/jfps.1008.
Hanum FS, Witaningrum AM, Puspitasari Y. Effect of Plectranthus scutellarioides (l.) leaf extract as natural antibacterial against Staphylococcus aureus and Escherichia coli isolated from dairy cattle with subclinical mastitis. J Basic Med Vet 11(02): 90-97.
Khotimah H, Wahyu Indriati D, Siti Sundari A. 2020. Screening in Vitro Antimicrobial Activity of Celery (Apium Graveolens) Against Staphylococcus sp. Malay J Med Health Sci 16(SUPP16).
Lee AS, De Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. 2018. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 4(1): 1-23. DOI: 10.1038/nrdp.2018.33.
Luliana S, Riza H, Indriyani EN. 2019. The effect of extraction method on total phenolic content and antioxidant activity of salam leaves (Syzygium polyanthum) using DPPH (1,1-Diphenyl-2-Picrylhidrazil). Trad Med J 24(2): 72–76. DOI: 10.22146/mot.33955.
Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology, 9th Edition, 1-855.
Nji E, Kazibwe J, Hambridge T, Joko CA, Larbi AA, Damptey LAO, Nkansa-Gyamfi NA, Stålsby Lundborg C, Lien LTQ. 2021. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci Rep 11(1): 3372. DOI: 10.1038/s41598-021-82693-4
Rahimi F. 2016. Characterization of resistance to aminoglycosides in methicillin-resistant staphylococcus aureus strains isolated from a tertiary care hospital in Tehran, Iran. Jundishapur J Microbiol 9(1): e29237. DOI: 10.5812/jjm.29237.
Silaban H. 2021. The Effect of Various Concentrations of Ethanol Extract of the Leaves of Paederia foetida L. on the Growth of Escherichia Coli Bacteria. J Drug Deliv and Ther 11(6): 61-67. DOI: 10.22270/jddt.v11i6.5037.
Tacconelli, Magrini N. 2013. WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. The Lancet Intfectious Diseases 18(3): 318-327. DOI: 10.1016/S1473-3099(17)30753-3.
Upadhyaya S. 2013. Screening of phytochemicals, nutritional status, antioxidant and antimicrobial activity of Paederia foetida Linn. from different localities of Assam, India. J Pharm Res 7(1) 139–141. DOI: 10.1016/j.jopr.2013.01.015.
Velhner M, Milanov D. 2016. Resistance to tetracycline in escherichia coli and Staphylococcus aureus: brief overview on mechanisms of resistance and epidemiology. Arch Vet Sci 8(1): 27-36. DOI: 10.46784/e-avm.v8i1.103.
Wardatun S, Rustiani E, Alfiani N, Rissani D. 2017. Study effect type of extraction method and type of solvent to cinnamaldehyde and trans-cinnamic acid dry extract cinnamon (Cinnamomum burmanii [Nees & t, Nees]Blume). J Young Pharm 9(1): S49–S51. DOI: 10.5530/jyp.2017.1s.13.
Xie Y, Yang W, Tang F, Chen X, Ren L. 2014. Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Curr Med Chem 22(1): 132–149. DOI: 10.2174/0929867321666140916113443.
Xue P, Zhao L, Wang Y, Hou Z, Zhang F, Yang X. 2020. Reducing the damage of quinoa saponins on human gastric mucosal cells by a heating process. Food Sci Nutr 8(1): 500-510. DOI: 10.1002/fsn3.1332.
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. 2021. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 10(1): 318. DOI: 10.3390/antibiotics10030318.
Yunita M, Ohiwal M, Dirks CS, Angkejaya OW, Sukmawati S, Ilsan NA. 2022. Endophytic bacteria associated with Myristica fragrans: Improved media, bacterial population, preliminary characterization, and potential as antibacterials. Biodiversitas 23(8): 4047-4054. DOI: 10.13057/biodiv/d230824.
Zhang P, Shi X, Khan SU, Ferreira B, Portela B, Oliveira, T, Borges G, Domingos H, Leitão J, Mohottige IP, Gharakheili HH, Moors T, Sivaraman V, Najari N, Berlemont S, Lefebvre G, Duffner S, Garcia C, Parmentier A, … Shan H. 2019. IEEE Draft Standard for Spectrum Characterization and Occupancy Sensing. IEEE Access 9(2).