Phytochemical profiling and antidiabetic evaluation of Peperomia pellucida as a potential alpha glucosidase inhibitor

##plugins.themes.bootstrap3.article.main##

SHOLIHATIL HIDAYATI
AYU TRI AGUSTIN
ENI KARTIKA SARI
SHINTA MAYA SARI
RIAN ANGGIA DESTIAWAN
WARDA ATIKA SILVANA

Abstract

Abstract. Hidayati S, Agustin AT, Sari EK, Sari SM, Destiawan RA, Silvana WA. 2023. Phytochemical profiling and antidiabetic evaluation of Peperomia pellucida as a potential alpha glucosidase inhibitor. Biodiversitas 24: 5972-5978. One strategy in post-prandial hyperglycemic control can be done by inhibiting the digestion of dietary carbohydrates through the inhibition of alpha glucosidase enzymes. This study was conducted to determine the antidiabetic activity of Peperomia pellucida in inhibiting the alpha glucosidase. An inhibitory activity analysis test was carried out on alpha glucosidase in vitro and in silico using alpha glucosidase. Molecular docking between receptors and ligands was performed using Hex 8.0 software. The setting column is set in Shape+Electro+DARS mode. The results showed ethanol extract and ethyl acetate fraction in vitro showed the ability to inhibit the activity of alpha glucosidase enzyme with C50 values of 13.43 mg/mL and 9.73 mg/mL respectively with IC50 positive control acarbose values of 8.11 mg/mL. The results of in silico analysis showed that the Patuloside A component was able to bind to the binding site of alpha glucosidase and gave the smallest binding energy value with a value of -321.4 kcal/mol compared to isovitexin, isoswertisin, pellucidatin, and caryatin-7-O-?-rhamnoside compounds. P. pellucida has the potential to be developed as an antidiabetic agent that has activity in inhibiting the work of the enzyme alpha glucosidase so that it can reduce blood glucose levels.

##plugins.themes.bootstrap3.article.details##

References
Agustin AT, Safitri A, Fatchiyah F. 2020. An in silico approach reveals the potential function of cyanidin-3-o-glucoside of red rice in inhibiting the advanced glycation end products (AGES)-receptor (RAGE) signaling pathway. Acta Inform Med 28 (3): 170. DOI: 10.5455/aim.2020.28.170-179.
Alqahtani AS., Hidayathulla S, Rehman MT, Elgamal AA, Al-Massarani S, Razmovski-Naumovski, Alqahtani MS, El Dib RA, Alajmi MF. 2020. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules 10 (1). DOI: 10.3390/biom10010061.
Alves, N. S. F., Setzer, W. N., & da Silva, J. K. R. 2019. The chemistry and biological activities of Peperomia pellucida (Piperaceae): A critical review. J Ethnopharmacol 232: 90–102. DOI: 10.1016/j.jep.2018.12.021.
Amarathunga AAMDDN, Kankanamge SU. 2017. A Review On Pharmacognostic, Phytochemical And Ethnopharmacological Findings Of Peperomia Pellucida (L.) Kunth: Pepper Elder. Int Res J Pharm 8 (11): 16–23. DOI: 10.7897/2230-8407.0811211.
Barber E, Houghton MJ, Williamson G. 2021. Flavonoids as human intestinal ?-glucosidase inhibitors. Foods 10 (8). DOI: 10.3390/foods10081939.
Bhatnagar A, Mishra A. (2022). ?-Glucosidase Inhibitors for Diabetes/Blood Sugar Regulation. Natural Products as Enzyme Inhibitors: An Industrial Perspective pp. 269–283. Springer.
Corkovic I, Gaso-Sokac D, Pichler A, Simunovic J, Kopjar M. 2022. Dietary Polyphenols as Natural Inhibitors of ?-Amylase and ?-Glucosidase. Life 12 (11). DOI: 10.3390/life12111692.
Daud MA, Abrar M. 2019. ?-Amylase And ?-Glucosidase Inhibitors From Plant Extracts. J Med Vet 13 (2):151-158. DOI: 10.21157/j.med.vet.v11i1.13819.
Desantis F, Miotto M, Di Rienzo L, Milanetti E, Ruocco G. 2022. Spatial organization of hydrophobic and charged residues affects protein thermal stability and binding affinity. Sci Rep 12(1). DOI: 10.1038/s41598-022-16338-5.
Dias MC, Pinto DCGA, Silva AMS. 2021. Plant flavonoids: Chemical characteristics and biological activity. Molecules 26 (17). DOI: 10.3390/molecules26175377.
Fu Y, Zhao J, Chen Z. 2018. Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Protein. Comput Math Methods Med. 2018 (4). DOI: 10.1155/2018/3502514.
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. 2018. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 107: 306–328. DOI: 10.1016/j.biopha.2018.07.157.
Hidayati S. 2021. Antidiabetic Activity of Peperomia pellucida In Streptozotocin-Induced Diabetic Mice. JFG 7(2): 120–130. DOI: 10.22487/j24428744.2021.v7.i2.15429.
Hossain U, Das AK, Ghosh S, Sil PC. 2020. An overview on the role of bioactive ?-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol 145. DOI: 10.1016/j.fct.2020.111738.
Lokesh R, Subashini EJ, Kannabiran K, Gopiesh KV. 2015. In silico analysis of Streptomyces sp secondary metabolite 1, 2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester with ESBL proteins. Int J Pharm Biol Sci 6: 1190–1195.
Malik A, Ardalani H, Anam S, McNair LM, Kromphardt KJK, Frandsen RJN, Franzyk H, Staerk D, Kongstad KT. 2020. Antidiabetic xanthones with ?-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia 142. DOI: 10.1016/j.fitote.2020.104522.
Martinez-Gonzalez AI, Diaz-Sanchez G, de la Rosa LA, Bustos-Jaimes I, Alvarez-Parrilla E. 2019. Inhibition of ?-amylase by flavonoids: Structure activity relationship (SAR). Spectrochimica Acta 206: 437–447. DOI: 10.1016/j.saa.2018.08.057.
Ning Z, Zhai L, Huang T, Peng J, Hu D, Xiao H, Wen B, Lin C, Zhao L, Bian Z. 2019. Identification of ?-glucosidase inhibitors from cyclocarya paliurus tea leaves using UF-UPLC-Q/TOF-MS/MS and molecular docking. Food Funct 10(4): 1893–1902. DOI: 10.1039/C8FO01845F.
Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Schell D, Thurlkill RL, Imura S, Scholtz JM, Gajiwala K, Sevcik J, Urbanikova L, Myers JK, Takano K, Hebert EJ, Shirley BA, Grimsley GR. 2014. Contribution of hydrogen bonds to protein stability. Protein Sci 23 (5): 652–661. DOI: 10.1002/pro.2449.
Pasmans K, Meex RCR, van Loon LJC, Blaak EE. 2022. Nutritional strategies to attenuate postprandial glycemic response. Obes Rev 23 (9). DOI: 10.1111/obr.13486.
Proenca C, Ribeiro D, Freitas M, Fernandes E. 2022. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of ?-amylase and ?-glucosidase activity: A review. Crit Rev Food Sci Nutr 62 (12): 3137–3207. DOI: 10.1080/10408398.2020.1862755.
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. 2021. Flavonoids: structure–function and mechanisms of action and opportunities for drug development. Toxicol Res 37 (2): 147–162. DOI: 10.1007/s43188-020-00080-z.
Santos CMM, Freitas M, Fernandes E. 2018. A comprehensive review on xanthone derivatives as ?-glucosidase inhibitors. Eur J Med Chem 157: 1460–1479. DOI: 10.1016/j.ejmech.2018.07.073.
Shao C, Shen L, Qiu C, Wang Y, Qian Y, Chen J, Ouyang Z, Zhan P, Guan X, Xie J. 2021. Characterizing the impact of high temperature during grain filling on phytohormone levels, enzyme activity and metabolic profiles of an early indica rice variety. Plant Biol 23 (5): 806–818. DOI: 10.1111/plb.13253.
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383 (32531). DOI: 10.1016/j.foodchem.2022.132531.
Takahama U, Hirota S. 2018. Interactions of flavonoids with ?-amylase and starch slowing down its digestion. Food Funct 9 (2): 677–687. DOI: 10.1039/c7fo01539a
Tang H, Huang L, Sun C, Zhao D. 2020. Exploring the structure-activity relationship and interaction mechanism of flavonoids and ?-glucosidase based on experimental analysis and molecular docking studies. Food Funct 11 (4): 3332–3350. DOI: 10.1039/c9fo02806d.
Tijjani H, Zangoma MH, Mohammed ZS, Obidola SM, Egbuna C, Abdulai SI. 2020. Polyphenols: Classifications, biosynthesis and bioactivities. Funct Foods Nutra pp: 389–414. DOI: 10.1007/978-3-030-42319-3_19
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. 2020. Important flavonoids and their role as a therapeutic agent. Molecules 25 (22). DOI: 10.3390/molecules25225243.
Wakhidah, A. Z., Novianti, C., & Mustaqim, W. 2021. Peperomia pellucida (L.) Kunth Piperaceae. Ethnobotany of Mountain Regions pp. 1–8. DOI: 10.1007/978-3-030-14116-5_91-2.
Wang TY, Li Q, Bi KS. 2017. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 13 (1):12–23. DOI: 10.1016/j.ajps.2017.08.004.
Xu S, Li N, Ning MM, Zhou CH, Yang QR, Wang MW. 2006. Bioactive compounds from Peperomia pellucida. J Nat Prod, 69 (2): 247–250. DOI: 10.1021/np050457s.
Ye GJ, Lan T, Huang ZX, Cheng XN, Cai CY, Ding SM, Xie ML, Wang B. 2019. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: ?-Glucosidase inhibition and glucose uptake promotion. Eur J Med Chem 177: 362–373. DOI: 10.1016/j.ejmech.2019.05.045.
Yuan H, Ma Q, Ye L, Piao G. 2016. The traditional medicine and modern medicine from natural products. Molecules 21(5). DOI: 10.3390/molecules21050559.