Isolation, phylogenetic analysis and bioprospection of myxobacteria from Vietnam

##plugins.themes.bootstrap3.article.main##

YEN NGUYEN THI NGOC
CHUNG DUONG DINH
https://orcid.org/0000-0002-2760-2031
HONG NGUYEN THI KIM
https://orcid.org/0009-0009-7918-4765
CHAM NGUYEN PHUONG
https://orcid.org/0009-0004-6403-2754
NHAN VO THI
https://orcid.org/0009-0006-5448-6247
LINH DINH THI LAN
https://orcid.org/0009-0007-9988-5564
NGOC NGUYEN LE BAO
https://orcid.org/0009-0004-4636-1597
THAI NGUYEN MINH
https://orcid.org/0000-0002-8967-1753
NGA NGUYEN DINH
https://orcid.org/0009-0007-6677-7989
ANH NGUYEN TU
https://orcid.org/0000-0003-2783-9175

Abstract

Abstract. Yen NTN, Chung DD, Hong NTK, Cham NP, Nhan VT, Linh DTL, Ngoc NLB, Thai NM, Nga ND, Anh NT. 2023. Isolation, phylogenetic analysis and bioprospection of myxobacteria from Vietnam. Biodiversitas 24: 5653-5663. Myxobacteria have been considered microbial factories for producing secondary metabolites that have a variety of potential biological actions for discovering and isolating new biological molecules. Myxobacteria were isolated from soil samples collected in some provinces/cities in Vietnam. The purified isolates were identified based on morphology, biochemical test and phylogenetic analysis inferred from 16S rRNA gene. High-throughput screening assays including 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DDPH) for antioxidant properties and microdilution for antimicrobial activity were performed with myxobacterial extracts. Compounds from potential strain were predicted using liquid chromatography coupled with mass spectrometry. Forty-three myxobacterial strains were isolated and classified into seven genera of Angiococcus, Archangium, Chondromyces, Corallococcus, Cystobacter, Melittangium, and Myxococcus. The extract from CT21 strain had the highest total antioxidant activity (IC50 = 52.34 ± 1.47 and 30.28 ± 0.74 ?g/mL for the DPPH and ABTS, respectively). It is worth noting that all strains isolated myxobacterial strains show inhibitory activity against at least one of the tested microorganisms. The most potent antimicrobial strain was Myxococcus stipitatus GL41, which inhibited all tested microorganisms, and the minimal inhibitory concentration (MIC) values were 1 ?g/mL against methicillin-resistant Staphylococcus aureus (MRSA), methicillin-sensitive Staphylococcus aureus (MSSA), Streptococcus faecalis, Candida albicans, and Aspergillus niger. Mass spectrometry analysis revealed the presence of althiomycin - the polyketide antibiotic from ethyl acetate fraction. In the present study, myxobacteria were isolated from soil sample collected from Vietnam, analyzed phylogenetically, and screened for biological activities.

##plugins.themes.bootstrap3.article.details##

References
Charousová I, J Medo, S Javoreková. 2017. Isolation, antimicrobial activity of myxobacterial crude extracts and identification of the most potent strains. Arch Biol Sci 69: 561-568. DOI: 10.2298/ABS161011132C.
Charousová I, H Steinmetz, J Medo et al. 2017. Soil myxobacteria as a potential source of polyketide-peptide substances. Folia Microbiol (Praha) 62: 305-315. DOI: 10.1007/s12223-017-0502-2.
Cioch M, P Satora, M Skotniczy et al. 2017. Characterisation of antimicrobial properties of extracts of selected medicinal plants. Pol J Microbiol 66: 463. DOI: 10.5604/01.3001.0010.7002.
Cortina NS, D Krug, A Plaza et al. 2012. Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed Engl 51: 811-816. DOI: 10.1002/anie.201106305.
Cortina NS, O Revermann, D Krug et al. 2011. Identification and characterization of the althiomycin biosynthetic gene cluster in Myxococcus xanthus DK897. ChemBioChem 12: 1411-1416. DOI: 10.1002/cbic.201100154.
D BC, P Fabian, M Rolf. 2020. In depth natural product discovery-Myxobacterial strains that provided multiple secondary metabolites. Biotechnol Adv 39: 107480. DOI: 10.1016/j.biotechadv.2019.107480.
Dawid W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24: 403-427. DOI: 10.1111/j.1574-6976.2000.tb00548.x.
Diez J, JP Martinez, J Mestres et al. 2012. Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 11: 52. DOI: 10.1186/1475-2859-11-52.
Gaber NB, SI El Dahy, EA Shalaby. 2021. Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Convers Biorefin: 1-10. DOI: 10.1007/s13399-021-01386-0.
Gaspari F, Y Paitan, M Mainini et al. 2005. Myxobacteria isolated in Israel as potential source of new anti?infectives. J Appl Microbiol 98: 429-439. DOI: 10.1111/j.1365-2672.2004.02477.x.
Grajeda IC, E Salas, N Barouh et al. 2016. Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods. Food Chem 194: 749-757. DOI: 10.1016/j.foodchem.2015.07.119.
Hoffmann T, D Krug, N Bozkurt et al. 2018. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nature commun. 9: 1-10. DOI: 10.1038/s41467-018-03184-1.
Jiang DM, ZH Wu, JY Zhao et al. 2007. Fruiting and non-fruiting myxobacteria: a phylogenetic perspective of cultured and uncultured members of this group. Mol Phylogenet Evol 44: 545-552. DOI: 10.1016/j.ympev.2007.04.004.
Kirst HA, EF Szymanski, DE Dorman et al. 1975. Structure of althiomycin. J Antibiot 28: 286-291. DOI: 10.7164/antibiotics.27.897.
Kjaerulff L, R Raju, F Panter et al. 2017. Pyxipyrrolones: Structure elucidation and biosynthesis of cytotoxic myxobacterial metabolites. Angew Chem Int Ed Engl 56: 9614-9618. DOI: 10.1002/anie.201704790.
Kumar S, AK Yadav, P Chambel et al. 2017. Molecular and functional characterization of myxobacteria isolated from soil in India. 3 Biotech 7: 1-9. DOI: 10.1007/s13205-017-0722-9.
Kunze B, H Reichenbach, H Augustiniak et al. 1982. Isolation and identification of althiomycin from Cystobacter fuscus (Myxobacterales). J Antibiot 35: 635-636. DOI: 10.7164/antibiotics.35.635.
Ludwig W, KH Schleifer, H Reichenbach et al. 1983. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobacter fuscus, Sorangium cellulosum and Nannocystis exedens. Arch Microbiol 135: 58-62. DOI: 10.1007/BF00419483.
Manandhar S, S Luitel, RK Dahal. 2019. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med 2019. DOI: 10.1155/2019/1895340.
Markantonatou AM, K Samaras, E Zachrou et al. 2020. Comparison of four methods for the in vitro susceptibility testing of dermatophytes. Front Microbiol 11: 1593. DOI: 10.3389/fmicb.2020.01593.
Meliah S, P Lisdiyanti. 2018. Isolation, characterization and molecular identification of Myxobacteria from two outermost islands of Indonesia. Biotropia 25: 121-129. DOI: 10.11598/btb.2018.25.2.796.
Mohr KI. 2018. Diversity of Myxobacteria-We Only See the Tip of the Iceberg. Microorganisms 6: 1-23. DOI: 10.3390/microorganisms6030084.
Mohr KI, M Stechling, J Wink et al. 2016. Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. MicrobiologyOpen 5: 268-278. DOI: 10.1002/mbo3.325.
Octaviana S, G Primahana, T Mozef et al. 2022. Diversity of Myxobacteria Isolated from Indonesian Mangroves and Their Potential for New Antimicrobial Sources. 80: 46. DOI: 10.1007/s00284-022-03066-2.
Pivot X, C Villanueva, L Chaigneau et al. 2008. Ixabepilone, a novel epothilone analog in the treatment of breast cancer. Expert Opin Investig Drugs 17: 593-599. DOI: 10.1517/13543784.17.4.593.
Rodrigues FC, ATL Dos Santos, AJT Machado et al. 2019. Chemical composition and anti-Candida potencial of the extracts of Tarenaya spinosa (Jacq.) Raf.(Cleomaceae). Comp Immunol Microbiol Infect Dis 64: 14-19. DOI: 10.1016/j.cimid.2019.02.005.
Rosenberg E, EF DeLong, S Lory et al. 2014. Deltaproteobacteria. In: E Rosenberg (Eds.). The prokaryotes: Deltaproteobacteria and epsilonproteobacteria. Springer, Berlin, Heidelberg.
Saadatpour F, F Mohammadipanah. 2020. Bioprospecting of indigenous Myxobacteria from Iran and potential of Cystobacter as a source of anti-MDR compounds. Folia Microbiol 65: 639-648. DOI: 10.1007/s12223-019-00768-2.
Schäberle TF, F Lohr, A Schmitz et al. 2014. Antibiotics from myxobacteria. Nat Prod Rep 31: 953-972. DOI: 10.1039/c4np00011k.
Shimkets L, M Dworkin, H Reichenbach. 2006. The myxobacteria. In: M Dworkin, S Falkow, E Rosenberg et al. (Eds.). The prokaryotes. Springer, USA.
Shimkets LJ, M Dworkin, H Reichenbach. 2006. The myxobacteria. In: M Dworkin, S Falkow, E Rosenberg et al. (Eds.). The prokaryotes. Springer, New York.
Shrivastava A, RK Sharma. 2021. Myxobacteria and their products: Current trends and future perspectives in industrial applications. Folia Microbiol 66: 483-507. DOI: 10.1007/s12223-021-00875-z.
Sidney P. 1975. Althiomycin. In: WC John, EH Fred, JF Snell et al. (Eds.). Mechanism of Action of Antimicrobial and Antitumor Agents. Springer, Berlin, Heidelberg.
Spröer C, H Reichenbach, E Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49: 1255-1262. DOI: 10.1099/00207713-49-3-1255.
Thakur P, C Chopra, P Anand et al. 2018. Myxobacteria: Unraveling the potential of a unique microbiome niche. In: J Singh, D Sharma, G Kumar et al. (Eds.). Microbial Bioprospecting for Sustainable Development. Springer, Singapore.
Wang W, Jianing, S Wu, Z Zhang et al. 2021. Global geographic diversity and distribution of the Myxobacteria. Microbiol Spectr 9: e00012-00021. DOI: 10.1128/Spectrum.00012-21.
Wrótniak Drzewiecka W, AJ Brzezi?ska, H Dahm et al. 2016. Current trends in myxobacteria research. Ann Microbiol 66: 17-33. DOI: 10.1007/s13213-015-1104-3.
Yamaguchi H, Y Nakayama, K Takeda et al. 1957. A new antibiotic, althiomycin. J Antibiot 10: 195-200. DOI: 10.11554/antibioticsa.10.5_195.
Yi WC, CY Wei, HC Yao. 2019. Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop 22: 230-238. DOI: 10.1080/10942912.2019.1582541.
Zargaran M, S Taghipour, N Kiasat et al. 2017. Luliconazole, an alternative antifungal agent against Aspergillus terreus. J Mycol Med 27: 351-356. DOI: 10.1016/j.mycmed.2017.04.011.
Zhang X, Q Yao, Z Cai et al. 2013. Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China. PloS One 8: e70466. DOI: 10.1371/journal.pone.0070466.
Zhou XW, SG Li, W Li et al. 2014. Myxobacterial community is a predominant and highly diverse bacterial group in soil niches. Environ Microbiol Rep 6: 45-56. DOI: 10.1111/1758-2229.12107.