Physicochemical and structural composition of black rice (Oryza sativa) flour from Java, Indonesia




Abstract. Nurhidajah, Yonata D, Bintanah S, Pranata B. 2024. Physicochemical and structural composition of black rice (Oryza sativa) flour from Java, Indonesia. Biodiversitas 25: 811-818. Information regarding the characteristics of Indonesian black rice (Oryza sativa) flour from several varieties can provide a scientific base for developing its utilization. This study aimed to compare the physicochemical and structural composition of black rice varieties, namely Cempo Ireng, Melik, Sirampog, and Jeliteng from Java, Indonesia. Black rice was initially crushed to 100 mesh size. The flour's physicochemical and structural composition was then compared descriptively and the quantitative data was analyzed using the SPSS 22.0 software. As a result, significant differences were observed in starch content (68.45-71.08%), amylose content (13.99-18.49%), solubility (13.92-19.55%), swelling power (9.46-11.36%), water binding capacity (74.79-87.87%), and oil binding capacity (59.59-67.33%) of the four varieties of black rice flour. In addition, significant differences were also observed in the paste and thermal properties of various varieties. Morphological analysis shows that the flour structure has a similar shape, which is plate-shaped and contains many flakes. The relative crystallinity of Indonesian black rice flour ranges from 22.95% to 24.25%. This result reflects that all black rice flour particles have an A-type crystalline structure. All varieties of black rice flour have different physicochemical and structural compositions, except crystal structure that shows similarities (type A).


Ahmed AM, Zhang C, Liu Q. 2016. Comparison of physicochemical characteristics of starch isolated from sweet and grain sorghum. Journal of Chemistry 7648639: 1-15. DOI: 10.1155/2016/7648639.
Arifa AH, Syamsir E, Budijanto S. 2021. Physicochemical properties of black rice (Oryza sativa L) from West Jawa, Indonesia. agriTECH 41: 15-24. DOI: 10.22146/agritech.53307.
Chiranthika NNG, Chandrasekara A, Gunathilake KDPP. 2022. Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocolloids 124: 107272. DOI: 10.1016/j.foodhyd.2021.107272
Deng G-F, Xu X-R, Zhang Y, Li D, Gan R-Y, Li H-B. 2013. Phenolics compounds and bioactive of pigmented rice. Critical Review in Food Science and Nutrition 53: 296-306. DOI: 10.1080/10408398.2010.529624.
Deng M, Reddy CK, Xu B. 2020. Morphological, physico-chemical and functional properties of underutilized starches in China. International Journal of Biological Macromolecules 158: 648-65. DOI: 10.1016/j.ijbiomac.2020.05.031.
Devisetti R, Yadahally SN, Bhattacharya S. 2014. Nutrients and antinutrients in foxtail and proso millet milled fractions: Evaluation of their flour functionality. LWT – Food Science and Technology 59: 889-895. DOI: 10.1016/j.lwt.2014.07.003.
Farooq MA, Murtaza MA, Addil RM, Arshad R, Rahaman A, Siddique R, Hassan S, Akhtar HMS, Manzoor MF, Karrar E, Ali A, Haq AU. 2021. Investigating the structural properties and in vitro digestion of rice flours. Food Science & Nutrition 9(5): 2668-2675. DOI: 10.1002/fsn3.2225.
Ito VC, Lacerda LG. 2019. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry 301: 125304. DOI: 10.1016/j.foodchem.2019.125304.
Qadir N, Wani IA, Masoodi FA. 2021. Physicochemical, functional properties and in-vitro digestibility studies of starch from rice cultivars grown in Indian temperate region. Starch/Starke 73: 1–8. DOI: 10.1002/star.202000188.
Kang M-Y, Kim J-H, Rico CW, Nam S-H. 2011. A comparative study on the physicochemical characteristics of black rice varieties. International Journal of Food Properties 14: 1241-1254. DOI: 10.1080/10942911003637350.
Kong X, Zhu P, Sui Z, Bao J. 2015. Physicochemical properties of starches from diverse rice cultivarsvarying in apparent amylose content and gelatinisation temperaturecombinations. Food Chemistry 172: 433-440. DOI: 10.1016/j.foodchem.2014.09.085.
Kraithong S, Lee S, Rawdkuen S. 2018. Physicochemical and functional properties of Thai organic rice flour. Journal of Cereal Science 79: 259-266. DOI: 10.1016/j.jcs.2017.10.015.
Kristamtini, Wiranti EW, Surtarno. 2018. Varitation of pigmented and anthocyanin content of local black rice from Yogyakarta on two altitude. Buletin Plasma Nutfah 24: 99-106. DOI: 10.21082/blpn.v24n2.2018.p97-102.
Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153: 375-380. DOI: 10.1016/S0021-9258(18)71980-7.
Otegbayo B, Oguniyan D, Akinwumi O. 2014. Physicochemical and functional characterization of yam starch for potential industrial applications. Starch. 2014; 3-5, 235-250. DOI: 10.1002/star.201300056.
Phillips GO, Cui SW. 2011. An introduction: Evolution and finalization of the regulatory definition of dietary fibre. Food Hydrocolloids 25: 139-143. DOI: 10.1016/j.foodhyd.2010.04.011.
Qadir N, Wani IA. 2023. Functional properties, antioxidant activity and in-vitro digestibility characteristics of brown and polished rice flours of Indian temperate region. Grain & Oil Science and Technology 6: 43-57. DOI: 10.1016/j.gaost.2022.12.001.
Reddy CK, Kimi L, Haripriya S, Kang N. 2017. Effects of polishing on proximate composition, physico- chemical characteristics, mineral composition and antioxidant properties of pigmented rice. Rice Science 24: 241-252. DOI: 10.1016/j.rsci.2017.05.002.
Saharjo BH, Nurhayati AD. 2006. Domination and composition structure change at hemic peat natural regeneration following burning; a case study in Pelalawan, Riau Province. Biodiversitas 7: 154-158. DOI: 10.13057/biodiv/d070213.
Shao Y, Mao L, Guan W, Wei X, Yang Y, Xu F, Li Y, Jiang Q. 2020. Physicochemical and structural properties of low-amylose Chinese yam (Dioscorea opposita Thunb.) starches. International Journal of Biological Macromolecules 164: 427-433. DOI: 10.1016/j.ijbiomac.2020.07.054.
Sompong S, Siebenhandl-Ehn S, Linsberger-Martin G, Berghofer E. 2011. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Langka. Food Chemistry 124: 132-140. DOI: 10.1016/j.foodchem.2010.05.115.
Sun Y, Wang M, Ma S, Wang H. 2020. hysicochemical characterization of rice, potato, and pea starches, each with different crystalline pattern, when incorporated with Konjac glucomannan. Food Hydrocolloids. 101: 105499. DOI: 10.1016/j.foodhyd.2019.105499.
Tangsrianugul N, Wongsagonsup R, Suphantharika M. 2019. Physicochemical and rheological properties of flour and starch from Thai pigmented rice cultivars. International Journal of Biological Macromolecules 137: 666-675. DOI: 10.1016/j.ijbiomac.2019.06.196.
Waewkum W, Singthong J. 2021. Functional properties and bioactive compounds of pigmented brown rice flour. Bioactive Carbohydrate and Dietary Fiber 26: 100289. DOI: 10.1016/j.bcdf.2021.100289.
Xiong G, Jia L, Luo L, Ding Y, Lin Q, Liu C. 2023. Improvement in texture and cooking quality of black rice (Oryza sativa L.) using different pretreatments. Journal of Cereal Science 109: 103611. DOI: 10.1016/j.jcs.2022.103611.
Zhang Y, Chen L, Hu M, Kim JJ, lin R, Xu J, Fan L, Qi Y, Wang L, Liu W, Deng Y, Si J, Chen S. 2020. Dietary type 2 resistant starch improves systemic inflammation and intestinal permeability by modulating microbiota and metabolites in aged mice on high-fat diet. Aging (Albany NY) 12: 9173-9187. DOI: 10.18632%2Faging.103187.