Vegetation diversity and habitat suitability modeling of the invasive plant Bellucia pentamera in conservation forests of West Sumatra, Indonesia

##plugins.themes.bootstrap3.article.main##

SOLFIYENI SOLFIYENI
ADLI FADHLAN
AL AZIZ
GITO SYAHPUTRA
ANISA AZZAHRA
MILDAWATI MILDAWATI

Abstract

Abstract. Solfiyeni S, Fadhlan A, Aziz A, Syahputra G, Azzahra A, Mildawati M. 2024. Vegetation diversity and habitat suitability modeling of the invasive plant Bellucia pentamera in Conservation Forests of West Sumatra, Indonesia. Biodiversitas 25: 781-791. The invasive plant Bellucia pentamera has spread to several regions in Indonesia, including the province of West Sumatra. Mapping the distribution of this invasive plant needs to be done to facilitate its management. offers a comprehensive approach to delineate the potential ecological range of a species and assess habitat suitability. This study aimed to evaluate the impact of B. pentamera invasion on vegetation diversity, conduct potential distribution mapping, and assess B. pentamera habitat suitability in West Sumatra conservation forests. The study utilized observational methods to determine coordinate points for B. pentamera presence and conducted vegetation analysis. The results from the vegetation analysis revealed disparities in composition and structure across three study areas, with diversity indices ranging from 2.60 to 3.84. The similarity index between study areas was relatively low, below 50%. The MaxEnt analysis delineated suitable locations for B. pentamera using the ROC curve (AUC) model, yielding values of 0.947 for training data and 0.923 for testing data. MaxEnt modeling identified suitable habitat for B. pentamera concentrated at Lima Puluh Kota, Tanah Datar, Padang, Solok and South Solok districts. This study's findings indicate a broad distribution of this species, with over 5% of the habitat deemed suitable for B. pentamera.

##plugins.themes.bootstrap3.article.details##

References
Ali F, Khan N, Khan AM, Ali K, and Abbas F. 2023. Species distribution modeling of Monotheca Buxifolia (Falc.) A. DC.: Present distribution and impacts of potential climate change. Heliyon 9 (2): 1-16. DOI: 10.1016/j.helion.2023.e13417.
Bertrand R, Perez V, Gégout JC. 2012. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercuspubescens in France. Glob Chang Biol 18 (8): 2648-2660. DOI: 10.1111/j.1365-2486.2012.02679.x.
Carboni M, Livingstone SW, Isaac M E, Cadotte MW. 2021. Invasion drives plant diversity loss through competition and ecosystem modification. J Ecol 109 (10): 3587-3601. DOI:10.1111/1365-2745.13739.
Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classifcation of invaded and invasible ecosystems. Glob Chang Biol 18:44–62. https://doi.org/10.1111/j.1365-2486.2011.02549.x
De Kok RP, Briggs M, Pirnanda D, Girmansyah D. 2015. Identifying targets for plant conservation in Harapan rainforest, Sumatra. Trop Cons Sci 8 (1): 28-32. DOI: 10.1177/194008291500800105.
Dillis C, Marshall AJ, Rejmánek M. 2017. Change in disturbance regime facilitates invasion by Bellucia pentamera Naudin (Melastomataceae) at Gunung Palung National Park, Indonesia. Biol Inv 19 (4): 1329-1337. DOI: 10.1007/s10530-016-1345-5.
Dillis C, Andrew JM, Campbell OW, Mark NG. 2018. Prolific fruit output by the invasive tree Bellucia pentamera Naudin (Melastomataceae) is enhanced by selective logging disturbance. Biotropica 50 (4): 598–605. DOI: 10.1111/btp.125.
Fernández M, Hamilton H, Kueppers LM. 2013. Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 4 (5): 1-17. DOI: 10.1890/ES13-00049.1.
Fick SE, Hijmans RJ. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climat 37 (12): 4302-4315. DOI: 10.1002/joc.5086.
Gallardo B, Bacher S, Bradley B, Comín FA, Gallien, Jeschke JM, Sorte CJ, Vilà M. 2019. InvasiBES: Understanding and managing the impacts of invasive alien species on biodiversity and ecosystem services.NeoBiota 50: 109–122. DOI: 10.3897/neobiota.50.35466.
Guo Q, Fei S, Dukes JS, Oswalt CM, Iannone BV III, Potter KM . 2015. A unified approach for quantifying invasibility and degree of invasion. Ecology 96 (10): 2613-2621. DOI: https://doi.org/10.1890/14-2172.1.
Huang YI, Zeng Y, Jiang P, Chen H, Yang J. 2022. Prediction of potential geographic distribution of endangered relict tree species Dipteroniasinensis in China based on MaxEnt and GIS. Pol J Env Stud 31 (4): 3597-3609 DOI: 10.15244/pjoes/146936
Kalusová V, Chytrý M, Peet RK, Wentworth TR 2014 Alien species pool infuences the level of habitat invasion in the intercontinental exchange of alien plants. Glob Ecol BiO Geogr 23 (12): 1366-1375. DOI: 10.1111/geb.12209.
Kharivha T, Ruwanza S. Thondhlana G. 2022. Effects of elevated temperature and high and low rainfall on the germination and growth of the invasive alien plant Acacia mearnsii. Plants 11 (19): 2633. DOI 10.3390/plants11192633.
Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W. 2005. Global patterns of plant diversity and floristic knowledge. J Biogeography 32 (7):1107-1116. DOI:org/10.1111/j.1365-2699.2005.01272.x.
Lee DC, Powell VJ, Lindsell JA. 2015. The conservation value of degraded forests for agile gibbons Hylobates Agilis. Amrc J Primatol 77 (1): 76-85. DOI: 10.1002/ajp.22312.
Li Q, Tang SC, Pan YM, Wei CQ, Lü SH. 2022. Increased precipitation magnifies the effects of N addition on performance of invasive plants in subtropical native communities. J of Plant Ecol 15 (3): 473-484. DOI: 10.1093/jpe/rtab103
Lindsell JA, Lee DC, Powell VJ, Gemita E. 2015. Availability of large seed-dispersers for restoration of degraded tropical forest. Trop Cons Sci 8 (1): 17-27. DOI: 10.1177/194008291500800104.
Liu Y, Xu P, Cao C, Shan B, Zhu K, Ma Q, Yin H. 2021. A comparative evaluation of machine learning algorithms and an improved optimal model for landslide susceptibility: a case study. J Geo Nat Haz and Risk 12 (1): 1973-2001. DOI: 10.1080/19475705.2021.1955018.
Misra, RP. (1973). Metode Analisis Vegetasi. Penerbit Bumi Aksara.[Indonesia]
Moura LA, Vitorino MD. 2018.Ecological aspects of the invasive plant Bellucia Pentamera (Melastomataceae) in the Atlantic Forest of Brazil. Brazil Bot Acta 32 (1): 34-41.
Mueller-Dombois D, Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.
Odum EP. 1971. Fundamentals of Ecology. Philadelphia: W.B. Saunders co.
Ormsby M, Brenton-Rule E. 2017. A review of global instruments to combat invasive alien species in forestry. Biol Inv 19 (11): 3355-3364. DOI: 10.1007/s10530-017-1426-0.
Pfeiffer SS, Gorchov DL. 2015. Effects of the invasive shrub Loniceramaackii on soil water content in Eastern Deciduous Forest. Am Midland Nat 173 (1): 38-46. DOI: 10.1674/0003-0031-173.1.38.
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of Maxent. Ecography 40 (7): 887-893. DOI : 10.1111/ecog.03049.
Ray D, Behera MD, Jacob J. 2018. Evaluating ecological niche models: A comparison between Maxent and GARP for predicting distribution of Heveabrazilian in India. Proc Natl Acad Sci India Sect B Biol Sci 88 (3): 1337-1343. DOI: 10.1007/s40011-017-0869-5.
Rundel PW, Arroyo MT, Cowling RM, Keeley JE, Lamont BB, Vargas P. 2016. Mediterranean biomes: evolution of their vegetation, floras, and climate. . Annu. Rev. Ecol. Evol 47 (1): 383-407. DOI: 10.1146/annurev-ecolsys-121415-032330.
Shen Y, Tu Z, Zhang Y, Zhong W, Xia H, Hao Z, Li H. 2022. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. J of Envir Manag 322: 116024. DOI: 10.1016/j.jenvman.2022.116024.
Sholiqin M, Pramadaningtyas PS, Solikah I, Febriyanti S, Pambudi MD, Mahartika SB, Setyawan AD. 2021. Intl J Bonorowo Wetlands 11 (2): 84-94. DOI: 10.13057/bonorowo/w110205.
Silva JL, Cruz-Neto C, M Tabarelli UP, Albuquerque D, Lopes AV. 2022. Climate change will likely threaten areas of suitable habitats for the most relevant medicinal plants native to the Caatinga dry forest. Ethnobiol Cons 11 (15): 24-48. DOI: 10.15451/ec2022-06-11.15-1-24.
Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B. 2013. Impacts of biological invasions: what’s what and the way forward. Trends EcolEvol 28 (1): 58-66. DOI: 10.1016/j.tree.2012.07.013.
Solfiyeni, Syamsuardi, Chairul, Mukhtar E. 2022a. Impact of invasive tree species Bellucia pentamera on Plant Diversity, Microclimate and soil of secondary tropical forest in West Sumatra, Indonesia. Biodiversitas 2 (6): 3135-3146. DOI: 10.13057/biodiv/d230641.
Solfiyeni, Mukhtar E, Syamsuardi, Chairul. 2022b. Distribution of invasive alien plant species, Bellucia pentamera , in forest conservation of oil palm plantation, West Sumatra, Indonesia. Biodiversitas 23 (7): 3329-3337. DOI: 10.13057/biodiv/d230744.
Solfiyeni. 2022c. Studi Ekologi Tumbuhan Asing Invasif Bellucia pentamera Naudin di Kawasan Hutan Bernilai Konservasi Tinggi PT. Kencana Sawit Indonesia. Disertasi. Universitas Andalas, Padang. [Indonesia]
Srivastava S, Dvivedi A, Shukla RP. 2014. Invasive Alien Species of Terrestrial Vegetation of North-Eastern Uttar Pradesh. Int J ForRes (8): 1-9 DOI: 10.1155/2014/959875.
Suwardi AB, Syamsuardi, Mukhtar E, Nurainas. 2023. Diversity, distribution, and conservation status of wild edible fruit species in Sumatra, Indonesia: A case study in western and eastern Bukit Barisan Mountains. Phil J of Sci DOI:10.56899/152.05.19.
Tanase C, Co?arc? S, Muntean DL. 2019. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 24(6): 1182. DOI: 10.3390/molecules24061182.
Tjitrosoedirdjo S, Setyawati T. 2016. Tumbuhan invasif dan pendekatan pengelolaanya. SEAMEO BIOTROP, Bogor. [Indonesia]
Wahyuni I, Sulistijorini, Setiabudi, Meijide A, Nomura M, Kreft H, Rembold K, Tjitrosoedirdjo S. 2016. Distribution of invasive plant species in different land-use systems in Sumatra, Indonesia. Biotropia 23 (2): 124-132. DOI:10.11598/btb.2016.23.2.534.
Wan JZ, Wang CJ, Yu FH. 2019. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modeling for invasive plants. Biology 74 (7) 757-766. DOI : 10.2478/s11756-019-00215-0.
Xiong QL, He YL, Deng FY, Li TY, Yu L. 2019. Assessment of alpine mean response to climate change in Southwest China based on MaxEnt model. Acta Ecol 39 (24): 9033–9043. DOI: 10.5846/stxb201809262085.
Yudaputra A. 2020. Modeling potential current distribution and future dispersal of an invasive species Calliandra Calothyrsus in Bali Island, Indonesia. Biodiversitas 21 (2): 674-682. DOI: 10.13057/biodiv/d210233.
Zhuang, H., Zhang, Y., Wang, W., Ren, Y., Liu, F., Du, J., & Zhou, Y. (2018). Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case. Biodiv Sci 26 (9): 931. DOI: 10.17520/BIODS.2018059.

Most read articles by the same author(s)