The impact of Saccharomyces cerevisiae stimulation on various physiological indicators of oats (Avena sativa) exposed to salinity

##plugins.themes.bootstrap3.article.main##

HIBA FOUAD ABDULFATAH
ENAS FAHD NAJI

Abstract

Abstract. Abdulfatah HF, Naji EF. 2023. The impact of Saccharomyces cerevisiae stimulation on various physiological indicators of oats (Avena sativa) exposed to salinity. Biodiversitas 24: 6753-6760. The objective of the current study is to examine the effects of different levels of salinity, specifically 0, 2.5, and 4.5 ds m-1(S1, S2, S3), on diverse physiological parameters in two principal oat cultivars (Avena sativa L.), Pimula (A1), and Genzania (A2), priming with Saccharomyces cerevisiae for 24 hours at a concentration of 0 and 6 g.L-1. The study employed a completely randomized design with three repetitions for each treatment and was conducted at the laboratory of the College of Science, University of Anbar. The Genzania cultivar that was not stimulated with yeast demonstrated the highest percentage of total chlorophyll content (2.28 mg. g. plant-1), statistically significant (P?0.05) compared to the lowest rate recorded by the Pimula cultivar (1.94 mg. g. plant-1). While no significant differences appeared between both cultivars stimulated with yeast under the influence of the salinity concentrations, the S2 treatment had the highest rate and significantly more than the S3 treatment. This demonstrates increased tolerance of the yeast priming cultivars to salinity treatment. The A2 cultivar was characterized by the highest rate of proline in plants stimulated and not stimulated with yeast, with significant differences from the A1 cultivar. However, the S3 treatment had the highest rate of proline (20.96?mole g plant-1) in the stimulated plants, with a higher significance than treatment S2. There was a statistically significant in the electrolyte leakage rate between the non-stimulated cultivars. In contrast, no significant differences appeared for the plants stimulated with yeast, indicating an increase in their tolerance to salinity. Priming seeds with yeast extract has been shown to improve important physiological characteristics in plants, such as total chlorophyll content, proline content, and electrolyte leakage, indicating the effectiveness of yeast in increasing plant resilience to salt stress.

##plugins.themes.bootstrap3.article.details##

References
Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J. and Hernandez, J.A. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1):18. DOI: 10.3390/agronomy7010018
Alharby, H.F., Al-Zahrani, H.S., Hakeem, K.R. and Iqbal, M. 2019. Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vigna radiata (L.) Wilczek] genotypes. Saudi journal of biological sciences, 26(5):1053-1060.DOI:10.1016/j.sjbs.2018.08.006
Alyammahi, O. and Gururani, M.A. 2020. Chlorophyll-a fluorescence analysis reveals differential response of photosynthetic machinery in melatonin-treated oat plants exposed to osmotic stress. Agronomy, 10(10): 1520.DOI:10.3390/agronomy10101520
Bai, J., Yan, W., Wang, Y., Yin, Q., Liu, J., Wight, C. and Ma, B. 2018. Screening oat genotypes for tolerance to salinity and alkalinity. Frontiers in Plant Science, 9: 1302.DOI:10.3389/fpls.2018.01302
Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant and Soil, 39: 205-207. DOI:10.1007/BF00018060
Ben Rejeb, K., Abdelly, C., & Savouré, A. 2014. How reactive oxygen species and proline face stress together. Plant physiology and biochemistry : PPB, 80: 278–284. DOI:10.1016/j.plaphy.2014.04.007
Biswas, S., Seal, P., Majumder, B. and Biswas, A.K., 2023. Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress, p.100186. DOI:10.1016/j.stress.2023.100186
Chen, K. and Arora, R. 2011. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Science, 180(2):212-220. DOI: 10.1016/j.plantsci.2010.08.007.
Ding, Y., Liu, Y., Zhao, L., Zhou, M., Zhang, L., Wang, G. and Jia, J. 2023. Effects of salt stress on nutritional quality of Orange-Heading chinese cabbage seedlings. Pak. J. Bot, 55(3):837-841.DOI:10.30848/PJB2023-3(32)
El Moukhtari, A., Cabassa-Hourton, C., Farissi, M. and Savouré, A. 2020. How does proline treatment promote salt stress tolerance during crop plant development?. Frontiers in plant science, 11:1127.DOI:10.3389/fpls.2020.01127
El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M.A., Islam, M.S., Fahad, S., Sytar, O., Çi?, F., Meena, R.S. and Erman, M. 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. Environment, climate, plant and vegetation growth, 503-533.DOI: 10.5772/intechopen.98745
Guo X, Zhi W, Feng Y, Zhou G, Zhu G .2022. Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defense. PLoS ONE 17(2): e0263036. DOI:10.1371/journal.pone.0263036
Hernández-Fernández, M., Cordero-Bueso, G., Ruiz-Muñoz, M., & Cantoral, J. M. 2021. Culturable Yeasts as Biofertilizers and Biopesticides for a Sustainable Agriculture: A Comprehensive Review. Plants, 10(5): 822. MDPI AG. DOI:10.3390/plants10050822
Ibrahim E. A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of plant physiology, 192: 38–46. DOI:10.1016/j.jplph.2015.12.011
Jiang, X.W., Zhang, C.R., Wang, W.H., Xu, G.H. and Zhang, H.Y. 2020. Seed priming improves seed germination and seedling growth of Isatis indigotica Fort. under salt stress. HortScience, 55(5):647-650. DOI:10.21273/HORTSCI14854-20
Kazimierczak, R., ?rednicka-Tober, D., Leszczy?ska, D., Nowacka, A., Hallmann, E., Bara?ski, M., Kopczy?ska, K. and Gnusowski, B. 2020. Evaluation of phenolic compounds and carotenoids content and mycotoxins occurrence in grains of seventeen barley and eight oat cultivars grown under organic management. Applied Sciences, 10(18):6369. DOI:10.3390/app10186369
Lichtenthaler, H.K., 1987. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148: 350-382). Academic Press.DOI:10.1016/0076-6879(87)48036-1
Ovando-Martínez, M., Whitney, K., Reuhs, B. L., Doehlert, D. C., & Simsek, S. 2013. Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Research International, 52(1): 17-25.? DOI:10.1016/j.foodres.2013.02.035
Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M. A. L. A. K. A., Carbonera, D., & Balestrazzi, A. 2015. Seed priming: state of the art and new perspectives. Plant cell reports, 34:1281-1293. DOI:10.1007/s00299-015-1784-y
Parvin, K., Nahar, K., Hasanuzzaman, M., Bhuyan, M. H. M. B., Mohsin, S. M., & Fujita, M. 2020. Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant physiology and biochemistry : PPB, 150: 109–120. DOI:10.1016/j.plaphy.2020.02.030
Patanè, C., Cosentino, S. L., Romano, D., & Toscano, S. 2022. Relative Water Content, Proline, and Antioxidant Enzymes in Leaves of Long Shelf-Life Tomatoes under Drought Stress and Rewatering. Plants, 11(22): 3045. MDPI AG. DOI: 10.3390/plants11223045
Sayyad-Amin, P., Jahansooz, M. R., Borzouei, A., & Ajili, F. 2016. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. Journal of biological physics, 42:601-620.? DOI:10.1007/s10867-016-9428-1
Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J .2015. Connecting Proline and ?-Aminobutyric Acid in Stressed Plants through Non-Enzymatic Reactions. PLOS ONE 10(3): e0115349. DOI:10.1371/journal.pone.0115349
Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. 2023. Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture, 13(2): 462. MDPI AG. DOI:10.3390/agriculture13020462
Thakur, A., Sharma, K. D., Siddique, K. H., & Nayyar, H. 2020. Cold priming the chickpea seeds imparts reproductive cold tolerance by reprogramming the turnover of carbohydrates, osmo-protectants and redox components in leaves. Scientia Horticulturae, 261:108929.? DOI:10.1016/j.scienta.2019.108929
Uçarl?, C. 2020. Effects of salinity on seed germination and early seedling stage. Abiotic Stress in Plants, 211.https://www.intechopen.com/chapters/73200
Witham, F.H., Blaydes, D.F. and Devlin, R.M. 1971. Experiments in plant physiology (Vol. 245). New York: Van Nostrand Reinhold Company.
Yadav, P. V., Maya, K., & Zakwan, A. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science, 4(3): 125-136. DOI:10.3923/rjss.2011.125.136
Zhu ZH, Sami A, Xu QQ, Wu LL, Zheng WY, Chen ZP, et al. 2021. Effects of seed priming treatments on the germination and development of two rapeseed (Brassica napus L.) varieties under the co-influence of low temperature and drought. PLoS ONE 16(9): e0257236. DOI:10.1371/journal.pone.0257236
Zia, Z., Bakhat, H. F., Saqib, Z. A., Shah, G. M., Fahad, S., Ashraf, M. R., Hammad, H. M., Naseem, W., & Shahid, M. 2017. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and environmental safety, 144: 11–18. DOI:10.1016/j.ecoenv.2017.06.004