Diversity and abundance of phytoplankton in Bone Bay, South Sulawesi, Indonesia and its relationship with environmental variables

##plugins.themes.bootstrap3.article.main##

RAHMADI TAMBARU
ANDI I. BURHANUDDIN
ABDUL HARIS
MUHAMMAD A. AMRAN
ARNIATI MASSINAI
AMIR HAMZAH MUHIDDIN
KHUSNUL YAQIN
FIRMAN
YULIANA

Abstract

Abstract. Tambaru R, Burhanuddin AI, Haris A, Amran MA, Massinai A, Muhiddin AH, Yaqin K, Firman, Yuliana. 2024. Diversity and abundance of phytoplankton in Bone Bay, South Sulawesi, Indonesia and its relationship with environmental variables. Biodiversitas 25: 624-631. Ecological studies of phytoplankton have been widely conducted in various bays around the world. However, such research is still limited in Bone Bay, South Sulawesi, Indonesia. Therefore, this study aimed to investigate the diversity and abundance of phytoplankton in Bone Bay and the relationships with environmental factors. Data collection was conducted in the dry season (May to June 2023) at four stations, namely Bajoe Harbor (PB), Cappa Ujung (CU), Libureng (LB), and Tongke-Tongke (TT). At each station, seawater samples were collected and environmental variables were measured including temperature, salinity, pH, currents, and nutrients (i.e. Nitrate, Nitrite, Ammonium, Orthophosphate, and Silicate). In general, the environmental variables in the studied area were within the range of optimal condition for phytoplankton to grow and develop. There were three classes of phytoplankton recorded, namely Bacillariophyceae, Cyanophyceae, and Dinophyceae, with a total of 31 genera were identified. Chaetoceros, Thallasionema, and Rhizosolenia were the dominant genera. The average abundance of phytoplankton was significantly different among stations with the highest was found in CU and PB compared to that in LB and TT (p-value <0.01). PCA analysis showed that phytoplankton abundance was related to high orthophosphate concentrations, silicate, and turbidity at the PB and CU stations, while the opposite condition occured at the LB and TT stations. Based on the diversity and abundance of phytoplankton, Bone Bay, South Sulawesi is now still in good condition, yet monitoring studies are recommended to see the changes in the future.

##plugins.themes.bootstrap3.article.details##

References
Abdelmageed, A. A., Ellah, R. G. A., Abdel-Satar, A. M., Gawad, S. S. A., Khalifa, N., Zaher, S. S., Othman, A.A., Belal, D.M., El-Hady, H.H.A., Salem, S.G., Abdo, M.H., Haroon, A.M., El-Far, A., Hegab, M.H., Elhaddad, E., El-Sherif, D.M., & Al-Afify, A. D. (2022). Evaluation of the ecological health and food chain on the shores of four River Nile Islands, Egypt. Environmental Monitoring and Assessment, 194(4), 309. DOI: 10.1007/s10661-022-09959-w
Ahmed, A., Madhusoodhanan, R., Yamamoto, T., Fernandes, L., Al-Said, T., Nithyanandan, M., Thuslim, F., Al-Zakri, W., & Al-Yamani, F. (2022). Analysis of phytoplankton variations and community structure in Kuwait Bay, Northwestern Arabian Gulf. Journal of Sea Research, 180, 102163. DOI: 10.1016/j.seares.2022.102163
APHA (American Public Health Association). (2005). Standard Methods for The Examination of Water and Wastewater. APHA, AWWA (American Water Works Association) and WPCF (Water Pollution Control Federation). Washington DC.
Ardyna, M., & Arrigo, K. R. (2020). Phytoplankton dynamics in a changing Arctic Ocean. Nature Climate Change, 10(10), 892-903. DOI: 10.1038/s41558-020-0905-y
Baldisserotto, C., Sabia, A., Ferroni, L., & Pancaldi, S. (2019). Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens. World Journal of Microbiology and Biotechnology, 35, 1-9. DOI: 10.1007/s11274-019-2607-z
Barinova, S., Gabyshev, V., Genkal, S., & Gabysheva, O. (2023). Diatoms of Small Water Bodies as Bioindicators in the Assessment of Climatic and Anthropogenic Impacts on the Coast of Tiksi Bay, Russian Arctic. Water, 15(8), 1533. DOI: 10.3390/w15081533
Berdalet, E., Chinain, M., Kirkpatrick, B., & Tester, P. A. (2023). Harmful algal blooms cause ocean illnesses affecting human health. In Oceans and Human Health (pp. 289-314). Academic Press. DOI: 10.1016/B978-0-323-95227-9.00020-8
Bogard, M. J., Vogt, R. J., Hayes, N. M., & Leavitt, P. R. (2020). Unabated nitrogen pollution favors growth of toxic Cyanobacteria over Chlorophytes in most hypereutrophic lakes. Environmental science & technology, 54(6), 3219-3227. DOI: 10.1021/acs.est.9b06299
Brosnahan, M. L., Fischer, A. D., Lopez, C. B., Moore, S. K., & Anderson, D. M. (2020). Cyst-forming dinoflagellates in a warming climate. Harmful Algae, 91, 101728. DOI: 10.1016/j.hal.2019.101728
Bruce, D. G., Cornwell, J. C., Harris, L., Ihde, T. F., Kellogg, M.L., Knoche, S., Lipcius, R.N., McCulloch-Prosser, D.N., McIninch, S.P., Ogburn, M.B., Seitz, R.D., Testa, J., Westby, S.R., & Vogt, B. (2021). A synopsis of research on the ecosystem services provided by Large-scale oyster restoration in the Chesapeake bay. NOAA Tech. Memo. NMFS-OHC, 8, 52.
Cervantes-Urieta, V. A., Trujillo-Tapia, M. N., Violante-González, J., Moreno-Díaz, G., Rojas-Herrera, A. A., & Rosas-Guerrero, V. (2021). Temporal dynamics of the phytoplankton community associated with environmental factors and harmful algal blooms in Acapulco Bay, Mexico. Latin american journal of aquatic research, 49(1), 110-124. DOI: 10.3856/vol49-issue1-fulltext-2525
Damar, A. 2003. Effect of Enrichment on Nutrient Dynamics, Phytoplankton Dynamics and Productivity in Indonesias Tropical Waters : a Comparison between Jakarta Bay, Lampung Bay and Semangka Bay. Dissertation. zur Erlangung Des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultat, der Cristian-Albrechts-Universitat zu Kiel, Kiel.
Damar, A., Colijn, F., Hesse, K. J., Adrianto, L., Yonvitner, Fahrudin, A., Kurniawan, F., Rahayu, S.T., Rudianto, B.Y., & Ramli, A. (2020). Phytoplankton biomass dynamics in tropical coastal waters of jakarta bay, indonesia in the period between 2001 and 2019. Journal of Marine Science and Engineering, 8(9), 674. DOI: 10.3390/jmse8090674
De Tommasi, E., Gielis, J., & Rogato, A. (2017). Diatom frustule morphogenesis and function: a multidisciplinary survey. Marine genomics, 35, 1-18. DOI: 10.1016/j.margen.2017.07.001
Dinh, N. V., Casareto, B. E., Niraula, M. P., Toyoda, K., Meekaew, A., & Suzuki, Y. (2021). Effect of diatom abundance and biogenic silica availability on the population growth of tintinnid ciliates at Suruga Bay. Journal of oceanography, 77, 307-321. DOI: 10.1007/s10872-020-00569-z
El Gammal, M. A. M., Nageeb, M., & Al-Sabeb, S. (2017). Phytoplankton abundance in relation to the quality of the coastal water–Arabian Gulf, Saudi Arabia. The Egyptian Journal of Aquatic Research, 43(4), 275-282. DOI: 10.1016/j.ejar.2017.10.004
Eliasen, S. K., Hátún, H., Larsen, K. M. H., & Jacobsen, S. (2017). Faroe shelf bloom phenology–The importance of ocean-to-shelf silicate fluxes. Continental Shelf Research, 143, 43-53. DOI: 10.1016/j.csr.2017.06.004
Flander-Putrle, V., Francé, J., & Mozeti?, P. (2021). Phytoplankton pigments reveal size structure and interannual variability of the coastal phytoplankton community (Adriatic Sea). Water, 14(1), 23. DOI: 10.3390/w14010023
Genitsaris, S., Stefanidou, N., Sommer, U., & Moustaka-Gouni, M. (2019). Phytoplankton blooms, red tides and mucilaginous aggregates in the urban Thessaloniki Bay, Eastern Mediterranean. Diversity, 11(8), 136. DOI: 10.3390/d11080136
Glibert, P. M., Heil, C. A., Madden, C. J., & Kelly, S. P. (2021). Dissolved organic nutrients at the interface of fresh and marine waters: flow regime changes, biogeochemical cascades and picocyanobacterial blooms—the example of Florida Bay, USA. Biogeochemistry, 1-27. DOI: 10.1007/s10533-021-00760-4
Gomes, H. D. R., Xu, Q., Ishizaka, J., Carpenter, E. J., Yager, P. L., & Goes, J. I. (2018). The influence of riverine nutrients in niche partitioning of phytoplankton communities–a contrast between the Amazon River Plume and the ChangJiang (Yangtze) River diluted water of the East China Sea. Frontiers in Marine Science, 5, 343. DOI: 10.3389/fmars.2018.00343
Han, D., Shin, H., Lee, J. H., Kang, C. K., Kim, D. G., & Hur, H. G. (2022). Phylogenetic diversity and spatiotemporal dynamics of bacterial and microeukaryotic plankton communities in Gwangyang Bay of the Korean Peninsula. Scientific Reports, 12(1), 2980. DOI: 10.1038/s41598-022-06624-7
He, H., Hu, E., Yu, J., Luo, X., Li, K., Jeppesen, E., & Liu, Z. (2017). Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study. Environmental Science and Pollution Research, 24, 5012-5018. DOI: 10.1007/s11356-016-8247-z
Hilaluddin, F., Yusoff, F. M., & Toda, T. (2020). Shifts in diatom dominance associated with seasonal changes in an estuarine-mangrove phytoplankton community. Journal of Marine Science and Engineering, 8(7), 528. DOI: 10.3390/jmse8070528
Hosseini, R., Sayadi, M. H., Aazami, J., & Savabieasfehani, M. (2020). Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Marine pollution bulletin, 160, 111682. DOI: 10.1016/j.marpolbul.2020.111682
Islam, M. T., Haider, S. M. B., & Md, A. S. (2021). Phytoplankton assemblages in the south eastern coastal area of the Bay of Bengal, Bangladesh with special reference to environmental variables. Int J Fish Aquat Stud, 9, 42-54.
Jackson, C. A., Schmutz, P., Harwell, M. C., & Littles, C. J. (2020). The ecosystem service of property protection and exposure to environmental stressors in the Gulf of Mexico. Ocean & coastal management, 184, 105017. DOI: 10.1016/j.ocecoaman.2019.105017
Jassim, Y. A., Awadh, E. F. A., & Al-Amery, S. M. H. (2023). A Review of General Properties of Blue-Green Algae (Cyanobacteria). Biomedicine and Chemical Sciences, 2(2), 143-148. DOI: 10.48112/bcs.v2i2.397
Jing, X., Zhuo, Y., Xu, Z., Chen, Y., Li, G., & Wang, X. (2023). Coastal Wetland Restoration Strategies Based on Ecosystem Service Changes: A Case Study of the South Bank of Hangzhou Bay. Land, 12(5), 1110. DOI: 10.3390/land12051110
Juranek, L. W., White, A. E., Dugenne, M., Henderikx Freitas, F., Dutkiewicz, S., Ribalet, F., Ferrón, S., Armbrust, E.V., & Karl, D. M. (2020). The importance of the phytoplankton “middle class” to ocean net community production. Global Biogeochemical Cycles, 34(12), e2020GB006702. DOI: 10.1029/2020GB006702
Karlson, B., Andersen, P., Arneborg, L., Cembella, A., Eikrem, W., John, U., West, J.J., Klemm, K., Kobos, J., Lehtinen, S., Lundholm, N., Mazur-Marzec, H., Naustvoll, L., Poelman, M., Provoost, P., De Rijcke, M., & Suikkanen, S. (2021). Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae, 102, 101989. DOI: 10.1016/j.hal.2021.101989
Liu, S., Cui, Z., Zhao, Y., & Chen, N. (2022). Composition and spatial-temporal dynamics of phytoplankton community shaped by environmental selection and interactions in the Jiaozhou Bay. Water Research, 218, 118488. DOI: 10.1016/j.watres.2022.118488
Mackenthum, K. M. 1969. The Practice of Water Pollution Biology. United States Department of Interior, Federal Water Pollution Control Administration, Division of Technical Support.
Mason CF. (1981). Biology of Freshwater Pollutan. Longman Singapore Publisher Ltd. 121p.
Mesquita, M. C., Prestes, A. C. C., Gomes, A. M., & Marinho, M. M. (2020). Direct effects of temperature on growth of different tropical phytoplankton species. Microbial ecology, 79, 1-11. DOI: 10.1007/s00248-019-01384-w
Meunier, C. L., Herstoff, E. M., Geisen, C., & Boersma, M. (2020). A matter of time and proportion: the availability of phosphorus-rich phytoplankton influences growth and behavior of copepod nauplii. Journal of Plankton Research, 42(5), 530-538. DOI: 10.1093/plankt/fbaa037
Nieder, R., Benbi, D. K., Reichl, F. X., Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Reactive water-soluble forms of nitrogen and phosphorus and their impacts on environment and human health. Soil components and human health, 223-255. DOI: 10.1007/978-94-024-1222-2_5
Oziel, L., Massicotte, P., Randelhoff, A., Ferland, J., Vladoiu, A., Lacour, L., Galindo, V., Lambert-Girard, S., Dumont, D., Cuypers, Y., Bouruet-Aubertot, P., Mundy, S.J., Ehn, J., Bécu, G., Marec, C., Forget, M.H., Garcia, N., Coupel, P., Raimbault, P., Houssais, M.N., & Babin, M. (2019). Environmental factors influencing the seasonal dynamics of spring algal blooms in and beneath sea ice in western Baffin Bay. Elem Sci Anth, 7, 34. DOI: 10.1525/elementa.372
Padisak, J., & Naselli-Flores, L. (2021). Phytoplankton in extreme environments: importance and consequences of habitat permanency. Hydrobiologia, 848(1), 157-176. DOI: 10.1007/s10750-020-04353-4
Pei, L., Hu, W., Wang, P., Kang, J., Mohamed, H. F., Wang, C., Liu, L., & Luo, Z. (2022). Morphologic and phylogenic characterization of two bloom-forming planktonic Prorocentrum (Dinophyceae) species and their potential distribution in the China Sea. Algal Research, 66, 102788. DOI: 10.1016/j.algal.2022.102788
Prelle, L. R., Graiff, A., Gründling-Pfaff, S., Sommer, V., Kuriyama, K., & Karsten, U. (2019). Photosynthesis and respiration of Baltic Sea benthic diatoms to changing environmental conditions and growth responses of selected species as affected by an adjacent peatland (Hütelmoor). Frontiers in microbiology, 10, 1500. DOI: 10.3389/fmicb.2019.01500
Rahav, E., Herut, B., Spungin, D., Levi, A., Mulholland, M. R., & Berman?Frank, I. (2022). Heterotrophic bacteria outcompete diazotrophs for orthophosphate in the Mediterranean Sea. Limnology and Oceanography, 67(1), 159-171. DOI: 10.1002/lno.11983
Ramos, G. J. P., & do Nascimento Moura, C. W. (2019). Algae and cyanobacteria in phytotelmata: diversity, ecological aspects, and conservation. Biodiversity and Conservation, 28(7), 1667-1697. DOI: 10.1007/s10531-019-01771-2
Remy, M., Hillebrand, H., & Flöder, S. (2017). Stability of marine phytoplankton communities facing stress related to global change: Interactive effects of heat waves and turbidity. Journal of Experimental Marine Biology and Ecology, 497, 219-229. DOI: 10.1016/j.jembe.2017.10.002
Rolton, A., Rhodes, L., Hutson, K. S., Biessy, L., Bui, T., MacKenzie, L., Symonds, J.E., & Smith, K. F. (2022). Effects of harmful algal blooms on fish and shellfish species: A case study of New Zealand in a changing environment. Toxins, 14(5), 341. DOI: 10.3390/toxins14050341
Séchet, V., Sibat, M., Billien, G., Carpentier, L., Rovillon, G. A., Raimbault, V., Malo, F., Gaillard, S., Parriere-Rumebe, M., Hess, P., & Chomérat, N. (2021). Characterization of toxin-producing strains of Dinophysis spp.(Dinophyceae) isolated from French coastal waters, with a particular focus on the D. acuminata-complex. Harmful Algae, 107, 101974. DOI: 10.1016/j.hal.2021.101974
Selifonova, Z. P., Makarevich, P. R., Samyshev, E. Z., & Bartsits, L. M. (2019). Study of ecosystem of the Sukhum Bay with emphasis anthropogenic impact, Abkhazian Black Sea coast. Ecologica Montenegrina, 22, 108-116. DOI: 10.37828/em.2019.22.8
Shibata, H., Ban, R., Hirano, N., Eguchi, S., Mishima, S. I., Chiwa, M., & Yamashita, N. (2021). Comparison of spatial and temporal changes in riverine nitrate concentration from terrestrial basins to the sea between the 1980s and the 2000s in Japan: Impact of recent demographic shifts. Environmental Pollution, 288, 117695. DOI: 10.1016/j.envpol.2021.117695
Sidabutar, T., Srimariana, E. S., Cappenberg, H. A. W., & Wouthuyzen, S. (2022). Harmful algal bloom of the three selected coastal bays in Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1119, No. 1, p. 012035). IOP Publishing. DOI: 10.1088/1755-1315/1119/1/012035
Song, Y., Guo, Y., Liu, H., Zhang, G., Zhang, X., Thangaraj, S., & Sun, J. (2022). Water quality shifts the dominant phytoplankton group from diatoms to dinoflagellates in the coastal ecosystem of the Bohai Bay. Marine Pollution Bulletin, 183, 114078. DOI: 10.1016/j.marpolbul.2022.114078
Stauffer, B. A., Sukhatme, G. S., & Caron, D. A. (2020). Physical and biogeochemical factors driving spatially heterogeneous phytoplankton blooms in nearshore waters of Santa Monica Bay, USA. Estuaries and coasts, 43, 909-926. DOI: 10.1007/s12237-020-00704-5
Tambaru, R., BURHANUDDIN, A. I., MASSINAI, A., & AMRAN, M. A. (2021). Detection of marine microalgae (phytoplankton) quality to support seafood health: A case study on the west coast of South Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 22(11). DOI: 10.13057/biodiv/d221156
Tomas, C.R., Hasle, G.R., Syvertsen, E.E., Steidinger, K.A., Tangen, K., Throndsen, J., Heimdal, B.R. 1997.Identifying Marine Phytoplankton. Academic Press.
Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology, 10(2), 158. DOI: 10.3390/biology10020158
Wang, X., Sun, J., & Yu, H. (2022). Distribution and environmental impact factors of phytoplankton in the Bay of Bengal during autumn. Diversity, 14(5), 361. DOI: 10.3390/d14050361
Witkowski, A., Ashworth, M., Li, C., Sagna, I., Yatte, D., Górecka, E., Franco, A.O.R., Kusber, W-F., Klein, G., Bertalot, H.L., D?bek, P., Theriot, E.C., & Manning, S. R. (2020). Exploring diversity, taxonomy and phylogeny of diatoms (Bacillariophyta) from marine habitats. Novel taxa with internal costae. Protist, 171(2), 125713. DOI: 10.1016/j.protis.2020.125713
Wu, M., Wu, J., & Zang, C. (2021). A comprehensive evaluation of the eco-carrying capacity and green economy in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Journal of Cleaner Production, 281, 124945. DOI: 10.1016/j.jclepro.2020.124945
Yamaji, C.S. 1979. Illustration of the marine plankton of Japan. Hoikiska Publ. Co. Ltd, Japan.
Yang, L., Li, H., Zhang, Y., & Jiao, N. (2019). Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. Environment international, 133, 105175. DOI: 10.1016/j.envint.2019.105175
Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10), 1896-1917. DOI: 10.3390/toxins5101896
Zhang, G., Liu, Z., Zhang, Z., Ding, C., & Sun, J. (2023). The impact of environmental factors on the phytoplankton communities in the Western Pacific Ocean: HPLC-CHEMTAX approach. Frontiers in Marine Science, 10, 1185939. DOI: 10.3389/fmars.2023.1185939
Zhang, Q., Fisher, T. R., Trentacoste, E. M., Buchanan, C., Gustafson, A. B., Karrh, R., Murphy, R.R., Keisman, J., Wu, C., Tian, R., Testa, J.M., & Tango, P. J. (2021). Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management. Water Research, 188, 116407. DOI: 10.1016/j.watres.2020.116407