Antibacterial activity of sea hare (Dolabella auricularia) egg string extracts against potentially pathogenic bacteria

##plugins.themes.bootstrap3.article.main##

CHENCY GRACE O. LIGUEZ
SHARON ROSE TABUGO
https://orcid.org/0000-0001-6813-840X

Abstract

Abstract. Liguez CGO, Tabugo SR. 2023. Antibacterial activity of sea hare (Dolabella auricularia) egg string extracts against potentially pathogenic bacteria. Biodiversitas 24: 6675-6683. Pharmaceutical industries now recognize the vast variety of ocean organisms, each possessing distinct biological characteristics. Sea hares, for example, are marine organisms that use bioactive chemicals to defend against predators, including their eggs. To explore the potential antibacterial properties of sea hare species (Dolabella auricularia) found in Pujada Bay, Philippines, egg strings were collected and extracted using hexane and methanol solvents. The antibacterial activity of each fraction was then determined through Minimum Inhibitory Concentration (MIC) testing against four potentially pathogenic bacteria, two gram-positive strains (Staphylococcus aureus, Bacillus subtilis) and two gram-negative strains (Escherichia coli, Pseudomonas aeruginosa). The broth microdilution method was employed to assess the antibacterial activity of Dolabella auricularia egg strings. The results revealed the MIC values for the four bacterial strains. The hexane extracts of both extract 1 and extract 2 exhibited a MIC of 0. 23 and 0.33 mg/mL and a MIC of 0.52 and 0.125 mg/mL against P. aeruginosa, respectively. The methanolic extracts (1 and 2) displayed a MIC of 1.46 and 2.83 mg/mL against E. coli and an even more potent MIC of 1.33 and 0.79 mg/mL against P. aeruginosa. In the case of B. subtilis, the hexane extracts (1 and 2) had a MIC of 1.5 and 0.54 mg/mL, while the methanolic extracts (1 and 2) exhibited a MIC of 1.17 mg/mL and 0.83 mg/mL. Lastly, against S. aureus, hexane extracts (1 and 2) suppressed the growth with a MIC of 0.77 mg/mL and 0.25 mg/mL, respectively, while both methanolic extracts (1 and 2) demonstrated a MIC of 3.33 mg/mL. These findings showcase the promising antibacterial activity of Dolabella auricularia egg string extracts and highlight their potential for further investigation and development in the pharmaceutical field.

##plugins.themes.bootstrap3.article.details##

References
Afifi Khattab, R. M., Abdel-Nabi, I. M., & El-Shaikh, K. (2016). Antibacterial activity from soft corals of the Red Sea, Saudi Arabia. Journal of Taibah University for Science, 10(6), 887–895. https://doi.org/10.1016/j.jtusci.2016.03.006
Aggio, J. F., & Derby, C. D. (2019). Aplysia. Encyclopedia of Animal Behavior, 3(July 2018), 1–5. https://doi.org/10.1016/B978-0-12-809633-8.20857-1
Ahmmed, M. K., Bhowmik, S., Giteru, S. G., Zilani, M. N. H., Adadi, P., Islam, S. S., Kanwugu, O. N., Haq, M., Ahmmed, F., Ng, C. C. W., Chan, Y. S., Asadujjaman, M., Chan, G. H. H., Naude, R., Bekhit, A. E. D. A., Ng, T. B., & Wong, J. H. (2022). An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Marine Drugs, 20(7). https://doi.org/10.3390/md20070430
Akhtar, R., Yousaf, M., Naqvi, S. A. R., Irfan, M., Zahoor, A. F., Hussain, A. I., & Chatha, S. A. S. (2016). Synthesis of ciprofloxacin-based compounds: A review. Synthetic Communications, 46(23), 1849–1879. https://doi.org/10.1080/00397911.2016.1234622
Al-Wahaibi, L. H., Amer, A. A., Marzouk, A. A., Gomaa, H. A. M., Youssif, B. G. M., & Abdelhamid, A. A. (2021). Design, synthesis, and antibacterial screening of some novel heteroaryl-based ciprofloxacin derivatives as dna gyrase and topoisomerase iv inhibitors. Pharmaceuticals, 14(5). https://doi.org/10.3390/ph14050399
Aref Shariati, Maniya Arshadi, Mohammad Ali Khosrojerdi, Mostafa Abedinzadeh, Mahsa Ganjalishahi, Abbas Maleki, Mohsen Heidary, & Khoshnood, S. (2022). The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Frontiers in Public Health.
Asgharpour, F., Moghadamnia, A. A., Alizadeh, Y., & Kazemi, S. (2020). Chemical Composition and antibacterial activity of hexane extract of Lycoperdon Pyriforme. South African Journal of Botany, 131(November 2021), 195–199. https://doi.org/10.1016/j.sajb.2020.01.044
Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9(4), 449–454. https://doi.org/10.1016/j.jtusci.2014.11.001
Borges, A., José, H., Homem, V., & Simões, M. (2020). Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from acacia dealbata and olea europaea. Antibiotics, 9(2). https://doi.org/10.3390/antibiotics9020048
Cheung, R. C. F., Wong, J. H., Pan, W., Chan, Y. S., Yin, C., Dan, X., & Ng, T. B. (2015). Marine lectins and their medicinal applications. Applied Microbiology and Biotechnology, 99(9), 3755–3773. https://doi.org/10.1007/s00253-015-6518-0
Cravotto, C., Fabiano-Tixier, A. S., Claux, O., Abert-Vian, M., Tabasso, S., Cravotto, G., & Chemat, F. (2022). Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods, 11(21). https://doi.org/10.3390/foods11213412
Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A. (2018). Methanol Production and Applications: An Overview. In Methanol: Science and Engineering. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63903-5.00001-7
Darya, M., Sajjadi, M. M., Yousefzadi, M., Sourinejad, I., & Zarei, M. (2020). Antifouling and antibacterial activities of bioactive extracts from different organs of the sea cucumber Holothuria leucospilota. Helgoland Marine Research, 74(1). https://doi.org/10.1186/s10152-020-0536-8
Delan, G. G., Pepito, A. R., Asakawa, M., Yasui, K., Cunado, V. D., Maningo, A. G., Gonzales, A. A., & Rica, R. L. V. (2015). “Partial Biochemical Characterization of Egg Masses of the Wedge Seahare Dolabella Auricularia (Lightfoot, 1786).” Tropical Technology Journal, 19(1), 1–6. https://doi.org/10.7603/s40934-015-0001-5
Desrini, S., Mashita, A. I., Rosary, A. N., Hidayah, U. N., & Fitria, A. (2018). Antibacterial activity screening of Muntingia Calabura L leaves methano extract on three bacterial pathogens. Pharmacologyonline, 2(August 2018), 1–10.
Dwivedi, M. K., Sonter, S., Mishra, S., Patel, D. K., & Singh, P. K. (2020). phytochemical characterization of Carica papaya flowers.
Fang, C., Stiegeler, E., Cook, G. M., Mascher, T., & Gebhard, S. (2014). Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics. PLoS ONE, 9(3), 1–9. https://doi.org/10.1371/journal.pone.0093169
Farhana, J. A., Hossain, F., & Mowlah, A. (2017). Antibacterial Effects of Guava (Psidium guajava L.) Extracts Against Food Borne Pathogens. International Journal of Nutrition and Food Sciences, 6(1), 1. https://doi.org/10.11648/j.ijnfs.20170601.11
Filho, S. M. G., Cardoso, J. D., Anaya, K., Do Nascimento, E. S., De Lacerda, J. T. J. G., Mioso, R., Gadelha, T. S., & De Almeida Gadelha, C. A. (2015). Marine sponge lectins: Actual status on properties and biological activities. Molecules, 20(1), 348–357. https://doi.org/10.3390/molecules20010348
Ganesan, P., Reegan, A. D., David, R. H. A., Gandhi, M. R., Paulraj, M. G., Al-Dhabi, N. A., & Ignacimuthu, S. (2017). Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. Alexandria Journal of Medicine, 53(2), 101–110. https://doi.org/10.1016/j.ajme.2016.03.004
Gao, G., Wang, Y., Hua, H., Li, D., & Tang, C. (2021). Marine antitumor peptide dolastatin 10: Biological activity, structural modification and synthetic chemistry. Marine Drugs, 19(7). https://doi.org/10.3390/md19070363
Gardères, J., Bourguet-Kondracki, M. L., Hamer, B., Batel, R., Schröder, H. C., & Müller, W. E. G. (2015). Porifera lectins: Diversity, physiological roles and biotechnological potential. In Marine Drugs (Vol. 13, Issue 8). https://doi.org/10.3390/md13085059
Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. In Phytochemistry Reviews (Vol. 18, Issue 1). https://doi.org/10.1007/s11101-018-9591-z
Hasan, I., & Ozeki, Y. (2019). Histochemical localization of N-acetylhexosamine-binding lectin HOL-18 in Halichondria okadai (Japanese black sponge), and its antimicrobial and cytotoxic anticancer effects. International Journal of Biological Macromolecules, 124, 819–827. https://doi.org/10.1016/j.ijbiomac.2018.11.222
Huang, Y. Z., Jin, Z., Wang, Z. M., Qi, L. B., Song, S., Zhu, B. W., & Dong, X. P. (2021). Marine Bioactive Compounds as Nutraceutical and Functional Food Ingredients for Potential Oral Health. Frontiers in Nutrition, 8(December). https://doi.org/10.3389/fnut.2021.686663
Ibrahim, H. A. H., Amer, M. S., Ahmed, H. O., & Hassan, N. A. (2020). Antimicrobial activity of the sea hare (Aplysia fasciata) collected from the Egyptian mediterranean sea, Alexandria. Egyptian Journal of Aquatic Biology and Fisheries, 24(4), 233–248. https://doi.org/10.21608/EJABF.2020.98019
Kato, A., Yoshifuji, A., Komori, K., Aoki, K., Taniyama, D., Komatsu, M., Fujii, K., Yamada, K., Ishii, Y., Kikuchi, T., & Ryuzaki, M. (2022). A case of Bacillus subtilis var. natto bacteremia caused by ingestion of natto during COVID-19 treatment in a maintenance hemodialysis patient with multiple myeloma. Journal of Infection and Chemotherapy, 28(8), 1212–1215. https://doi.org/10.1016/j.jiac.2022.05.006
Khalid Abbas, R., & Elsharbasy, F. (2019). Antibacterial Activity of Moringa oleifera Against Pathogenic Bacteria in Sudan. International Journal of Current Research, 11(1), 27–30. https://doi.org/10.24941/ijcr.33664.01.2019
Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. TheScientificWorldJournal, 2013, 162750. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3891543&tool=pmcentrez&rendertype=abstract
Lampropoulos, P. K., Gkentzi, D., Tzifas, S., & Dimitriou, G. (2021). Neonatal Sepsis Due to Bacillus subtilis. Cureus, 13(9), 9–10. https://doi.org/10.7759/cureus.17692
Lee, C.-H., Kaang, B.-K., & Lee, Y.-D. (2014). Spawning Behavior and Egg Development of Aplysia kurodai Inhabiting the Coastal Waters of Jeju Island, Korea. Development & Reproduciton, 18(1), 25–31. https://doi.org/10.12717/dr.2014.18.1.025
Love-Chezem, T., Aggio, J. F., & Derby, C. D. (2013). Defense through sensory inactivation: Sea hare ink reduces sensory and motor responses of spiny lobsters to food odors. Journal of Experimental Biology, 216(8), 1364–1372. https://doi.org/10.1242/jeb.081828
Macedo, M. W. F. S., Cunha, N. B. da, Carneiro, J. A., Costa, R. A. da, Alencar, S. A. de, Cardoso, M. H., Franco, O. L., & Dias, S. C. (2021). Marine Organisms as a Rich Source of Biologically Active Peptides. Frontiers in Marine Science, 8(July), 1–23. https://doi.org/10.3389/fmars.2021.667764
Magalhães, A. P., Jorge, P., & Pereira, M. O. (2019). Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: insights through network and database construction. Critical Reviews in Microbiology, 45(5–6), 712–728. https://doi.org/10.1080/1040841X.2019.1700209
Marques, D. N., Almeida, A. S. de, Sousa, A. R. de O., Pereira, R., Andrade, A. L., Chaves, R. P., Carneiro, R. F., Vasconcelos, M. A. de, Nascimento-Neto, L. G. do, Pinheiro, U., Videira, P. A., Teixeira, E. H., Nagano, C. S., & Sampaio, A. H. (2017). Antibacterial activity of a new lectin isolated from the marine sponge Chondrilla caribensis. International Journal of Biological Macromolecules, 109, 1292–1301. https://doi.org/10.1016/j.ijbiomac.2017.11.140
Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine Drugs, 12(2), 1066–1101. https://doi.org/10.3390/md12021066
Mashjoor, S., & Yousefzadi, M. (2017). Activité antifongique et antibactérienne des holothuries du golfe Persique sur des agents pathogènes humains. Journal de Mycologie Medicale, 27(1), 46–56. https://doi.org/10.1016/j.mycmed.2016.08.008
Motohashi, S., Jimbo, M., Naito, T., Suzuki, T., Sakai, R., & Kamiya, H. (2017). Isolation, amino acid sequences, and plausible functions of the galacturonic acid-binding egg lectin of the sea hare Aplysia kurodai. Marine Drugs, 15(6), 1–14. https://doi.org/10.3390/md15060161
Mustaev, A., Malik, M., Zhao, X., Kurepina, N., Luan, G., Oppegard, L. M., Hiasa, H., Marks, K. R., Kerns, R. J., Berger, J. M., & Drlica, K. (2014). Fluoroquinolone-gyrase-DNA complexes two modes of drug binding. Journal of Biological Chemistry, 289(18), 12300–12312. https://doi.org/10.1074/jbc.M113.529164
Pepito, A. R., Delan, G. G., Asakawa, M., Ami, L. J., Yap, E. E. S., Olympia, M. S., Yasui, K., Maningo, A. G., Rica, R. L. V., & Lamayo, M. H. A. (2015). Nutritional Quality of the Egg Mass Locally Known as “Lukot’ of the Wedge Seahare Dolabella auricularia (Lightfoot, 1786). Tropical Technology Journal, 19(1). https://doi.org/10.7603/s40934-015-0007-z
Petersen, L.-E., Kellermann, M. Y., & Schupp, P. J. (2020). Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. YOUMARES 9 - The Oceans: Our Research, Our Future, 159–180. https://doi.org/10.1007/978-3-030-20389-4_8
Prince, J. S., & Johnson, P. M. (2015). Ultrastructural Comparison of Processing of Protein and Pigment in the Ink Gland of Four Species of Sea Hares. Journal of Marine Biology, 2015, 10–14. https://doi.org/10.1155/2015/847961
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1), 1–27. https://doi.org/10.1038/s41392-022-01056-1
Ruaza, F. C. J. (2022). LETHALITY AND ANTIMICROBIAL SCREENING OF SEA HARE (Dolabella auricularia) INK AGAINST THE FISH PATHOGENS. Uttar Pradesh Journal of Zoology, November, 51–57. https://doi.org/10.56557/upjoz/2022/v43i213212
Shakouri, A., Shoushizadeh, M. R., & Nematpour, F. (2017). Antimicrobial activity of sea cucumber (Stichopus variegatus) body wall extract in Chabahar Bay, Oman sea. Jundishapur Journal of Natural Pharmaceutical Products, 12(1), 1–5. https://doi.org/10.5812/jjnpp.32422
Shameem, N., Kamili, A. N., Ahmad, M., Masoodi, F. A., & Parray, J. A. (2017). Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya. Microbial Pathogenesis, 105, 356–360. https://doi.org/10.1016/j.micpath.2017.03.005
Sharma, D., Patel, R. P., Zaidi, S. T. R., Sarker, M. M. R., Lean, Q. Y., & Ming, L. C. (2017). Interplay of the quality of ciprofloxacin and antibiotic resistance in developing countries. Frontiers in Pharmacology, 8(AUG), 1–7. https://doi.org/10.3389/fphar.2017.00546
Singh S. B. (2022). Discovery and Development of Dolastatin 10-Derived Antibody Drug Conjugate Anticancer Drugs. Journal of natural products, 85(3), 666–687. https://doi.org/10.1021/acs.jnatprod.1c01135
Srikacha, N., & Ratananikom, K. (2020). Antibacterial activity of plant extracts in different solvents against pathogenic bacteria: An in vitro experiment. Journal of Acute Disease, 9(5), 223. https://doi.org/10.4103/2221-6189.291288
Srilekha, V., Krishna, G., Seshasrinivas, V., & Charya, M. (2017). Antibacterial and anti-inflammatory activities of marine Brevibacterium sp. Research in Pharmaceutical Sciences, 12(4), 283–289. https://doi.org/10.4103/1735-5362.212045
Sukmiwati, M., Ilza, M., Putri, A. E., & Sidauruk, S. W. (2020). Antibacterial activity of sea cucumber (Holothuria atra) against Pseudomonas aeruginosa. IOP Conference Series: Earth and Environmental Science, 404(1). https://doi.org/10.1088/1755-1315/404/1/012047
Swarna, R. R., Asaduzzaman, A. K. M., Kabir, S. R., Arfin, N., Kawsar, S. M. A., Rajia, S., Fujii, Y., Ogawa, Y., Hirashima, K., Kobayashi, N., Yamada, M., Ozeki, Y., & Hasan, I. (2021). Antiproliferative and antimicrobial potentials of a lectin from aplysia kurodai (Sea hare) eggs. Marine Drugs, 19(7), 1–14. https://doi.org/10.3390/md19070394
Tam, C. C., Nguyen, K., Nguyen, D., Hamada, S., Kwon, O., Kuang, I., Gong, S., Escobar, S., Liu, M., Kim, J., Hou, T., Tam, J., Cheng, L. W., Kim, J. H., Land, K. M., & Friedman, M. (2021). Antimicrobial properties of tomato leaves, stems, and fruit and their relationship to chemical composition. BMC Complementary Medicine and Therapies, 21(1), 1–9. https://doi.org/10.1186/s12906-021-03391-2
Tan, Z., Deng, J., Ye, Q., & Zhang, Z. (2022). The Antibacterial Activity of Natural-derived Flavonoids. Current Topics in Medicinal Chemistry, 22(12), 1009–1019. https://doi.org/10.2174/1568026622666220221110506
Tayone, J. C. (2017). International Journal of Advanced and Applied Sciences Trac ing metal concentrations in egg strings of sea hare , Dolabella. 4(2), 134–138.
Tayone, J. C. (2020). Investigation of chemical composition and antibacterial activity of ink from sea hare dolabella auricularia. Walailak Journal of Science and Technology, 17(6), 600–607. https://doi.org/10.48048/wjst.2020.3075
Tayone, J. C., Del Rosario, R. M., Canencia, O. P., & Tayone, W. C. (2021). Egg Strings of Dolabella auricularia: Its in vitro Antioxidants and Antibacterial Activities. Asian Journal of Biological and Life Sciences, 10(2), 340–345. https://doi.org/10.5530/ajbls.2021.10.46
Tokano, M., Tarumoto, N., Imai, K., Sakai, J., Maeda, T., Kawamura, T., Seo, K., Takahashi, K., Yamamoto, T., & Maesaki, S. (2023). Bacterial Meningitis Caused by Bacillus subtilis var. natto. Internal Medicine, 62(13), 1989–1993. https://doi.org/10.2169/internalmedicine.0768-22
Vasconcelos, M. A., Arruda, F. V. S., Carneiro, V. A., Silva, H. C., Nascimento, K. S., Sampaio, A. H., Cavada, B., Teixeira, E. H., Henriques, M., & Pereira, M. O. (2014). Effect of algae and plant lectins on planktonic growth and biofilm formation in clinically relevant bacteria and yeasts. BioMed Research International, 2014. https://doi.org/10.1155/2014/365272
Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2014). Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Current Medicinal Chemistry, 22(1), 132–149. https://doi.org/10.2174/0929867321666140916113443
Yeo, Y. L., Chia, Y. Y., Lee, C. H., Sow, H. S., & Yap, W. S. (2014). Effectiveness of maceration periods with different extraction solvents on in-vitro antimicrobial activity from fruit of Momordica charantia L. Journal of Applied Pharmaceutical Science, 4(10), 16–23. https://doi.org/10.7324/JAPS.2014.40104
Zaky, A. A., Simal-Gandara, J., Eun, J. B., Shim, J. H., & Abd El-Aty, A. M. (2022). Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Frontiers in Nutrition, 8(January), 1–18. https://doi.org/10.3389/fnut.2021.815640
Zhou, H., Chen, L., Ouyang, K., Zhang, Q., & Wang, W. (2023). Antibacterial activity and mechanism of flavonoids from Chimonanthus salicifolius S. Y. Hu. and its transcriptome analysis against Staphylococcus aureus. Frontiers in Microbiology, 13(January). https://doi.org/10.3389/fmicb.2022.1103476