Dynamic of coral recruits in the Karimunjawa National Park, Central Java, Indonesia




Abstract. Tarigan SAR, Munasik, Wijayanti DP, Muhidin, Rohman EA, Pardede S. 2024. Dynamic of coral recruits in the Karimunjawa National Park, Central Java, Indonesia. Biodiversitas 25: 869-880. After a disturbance event, coral reefs can recover naturally by recruiting new corals. These can be affected by environmental factors like the substrate's physical and biological structure, predation, and accidental mortality of recruits by grazers, as well as the number and size of parent corals supplying larvae. This study examined the connection between newly recruited corals and biological factors such as sea urchin density, herbivorous fish abundance, and hard coral coverage. The study was monitored changes in coral cover, juvenile coral density, herbivore abundance, and hard coral coverage at 43 locations and two depths (shallow; 2-3 m) and deep (8-10 m) from 2013 to 2022. The locations were distributed across six different zone systems: the core zone, protection zone, tourism zone, traditional fisheries zone, aquaculture zone, and rehabilitation zone. Multiple Linae Regression, ANOVA test, and Principal Component Analysis were employed to assess the relationship between coral recruitment and other variables. Results indicated that the coral recruitment density was not significantly different when comparing different zoning systems (two-way ANOVA test, P-value>0.05). Based on the PCA analysis, we found that in 2013 and 2019, excavator, sea urchin, browser, and hard coral have a positive relationship with coral recruitment, which implies that coral recruitment would increase as sea urchin, browser, and hard coral increase. Meanwhile, in 2019 and 2022, coral recruitment has a negative relationship with scraper, and also with hard coral growth (although only in 2022), implying that coral recruitment would decrease if scraper and hard coral increase. The study recommends restoring the role of herbivorous species in Karimunjawa National Park (KNP) by prioritizing them in conservation efforts and managing their populations.


Adjeroud, M., Kayal, M., Iborra-Cantonnet, C., Vercelloni, J., Bosserelle, P., Liao, V., Chancerelle, Y., Claudet, J., & Penin, L. (2018). Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-27891-3
Agustina, S., Hartati, I. D., Muttaqin, A., Kartawijaya, T., Ningtyas, P., Ripanto, & Jamaludin. (2018). Laporan Teknis: Monitoring Pendaratan Ikan Hasil Tangkapan di Taman Nasional Karimunjawa (2009-2017). Wildlife Conservation Society–Indonesia Program, 36.
Anthony, K. R. N., Helmstedt, K. J., Bay, L. K., Fidelman, P., Hussey, K. E., Lundgren, P., Mead, D., McLeod, I. M., Mumby, P. J., Newlands, M., Schaffelke, B., Wilson, K. A., & Hardisty, P. E. (2020). Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE, 15(8 August), 1–14. https://doi.org/10.1371/journal.pone.0236399
Bejarano, S., Pardede, S., Campbell, S. J., Hoey, A. S., & Ferse, S. C. A. (2019). Herbivorous fish rise as a destructive fishing practice falls in an Indonesian marine national park. Ecological Applications, 29(8). https://doi.org/10.1002/eap.1981
Biondi, I., Munasik, & Koesoemadji. (2014). Kondisi Terumbu Karang Pada Lokasi Wisata Snorkeling Di Kepulauan Karimunjawa, Jawa Tengah. Journal of Marine Research, 194–201.
Campbell, S. J., Kartawijaya, T., Yulianto, I., Prasetia, R., & Clifton, J. (2013). Co-management approaches and incentives improve management effectiveness in the Karimunjawa National Park, Indonesia. Marine Policy, 41, 72–79. https://doi.org/10.1016/j.marpol.2012.12.022
Chung, A. E., Wedding, L. M., Green, A. L., Friedlander, A. M., Goldberg, G., Meadows, A., & Hixon, M. A. (2019). Building Coral reef resilience through spatial herbivore management. Frontiers in Marine Science, 6(MAR), 1–12. https://doi.org/10.3389/fmars.2019.00098
Dajka, J. C., Wilson, S. K., Robinson, J. P. W., Chong-Seng, K. M., Harris, A., & Graham, N. A. J. (2019). Uncovering drivers of juvenile coral density following mass bleaching. Coral Reefs, 38(4), 637–649. https://doi.org/10.1007/s00338-019-01785-w
Dang, V. D. H., Cheung, P. Y., Fong, C. L., Mulla, A. J., Shiu, J. H., Lin, C. H., & Nozawa, Y. (2020). Sea Urchins Play an Increasingly Important Role for Coral Resilience Across Reefs in Taiwan. Frontiers in Marine Science, 7(December). https://doi.org/10.3389/fmars.2020.581945
Doropoulos, C., Hyndes, G. A., Abecasis, D., & Vergés, A. (2013). Herbivores strongly influence algal recruitment in both coral- and algal-dominated coral reef habitats. Marine Ecology Progress Series, 486(May 2014), 153–164. https://doi.org/10.3354/meps10325
Elma, E., Gullström, M., Yahya, S. A. S., Jouffray, J. B., East, H. K., & Nyström, M. (2023). Post-bleaching alterations in coral reef communities. Marine Pollution Bulletin, 186(December 2022). https://doi.org/10.1016/j.marpolbul.2022.114479
Giyanto, Dewi, R., & Azkiyah, B. U. (2023). Coral recruitment and its relationship to hard coral cover in the Derawan Islands, East Kalimantan. IOP Conference Series: Earth and Environmental Science, 1137(1). https://doi.org/10.1088/1755-1315/1137/1/012001
Green, A. L., & Bellwood, D. R. (2009). Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region. In Science (Issue 7). http://cmsdata.iucn.org/downloads/resilience_herbivorous_monitoring.pdf
Harrison, P. L., dela Cruz, D. W., Cameron, K. A., & Cabaitan, P. C. (2021). Increased Coral Larval Supply Enhances Recruitment for Coral and Fish Habitat Restoration. Frontiers in Marine Science, 8(December), 1–22. https://doi.org/10.3389/fmars.2021.750210
Hill, J., & Wilkinson, C. (2004). Methods for ecological monitoring of coral reefs. In Australian Institute of Marine Science, Townsville. https://doi.org/10.1017/CBO9781107415324.004
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., & Dove, S. (2017). Coral reef ecosystems under climate change and ocean acidification. Frontiers in Marine Science, 4(MAY). https://doi.org/10.3389/fmars.2017.00158
Hoey, A. S., Pratchett, M. S., & Cvitanovic, C. (2011). High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS ONE, 6(10), 1–9. https://doi.org/10.1371/journal.pone.0025824
Isdianto, A., Kurniawan, A., Wicaksono, A. D., Marhaendra, Q. N. I., Putri, B. M., Fathah, A. L., Asadi, M. A., Luthfi, O. M., Pratiwi, D. C., & Harahab, N. (2023). Observation of Coral Reef and Macroalgae Competition in the Sempu Strait, Malang. Journal of Ecological Engineering, 24(10), 174–184. https://doi.org/10.12911/22998993/170246
Kennedy, E. V., Vercelloni, J., Neal, B. P., Ambariyanto, Bryant, D. E. P., Ganase, A., Gartrell, P., Brown, K., Kim, C. J. S., Hudatwi, M., Hadi, A., Prabowo, A., Prihatinningsih, P., Haryanta, S., Markey, K., Green, S., Dalton, P., Lopez-Marcano, S., Rodriguez-Ramirez, A., … Hoegh-Guldberg, O. (2020). Coral reef community changes in Karimunjawa National Park, Indonesia: Assessing the efficacy of management in the face of local and global stressors. Journal of Marine Science and Engineering, 8(10), 1–27. https://doi.org/10.3390/jmse8100760
Leinbach, S. E., Speare, K. E., Rossin, A. M., Holstein, D. M., & Strader, M. E. (2021). Energetic and reproductive costs of coral recovery in divergent bleaching responses. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-02807-w
Madyaningrum, I. R., Utomo, A. C. C., & Pratama, Y. W. (2019). Partisipasi Masyarakat Lokal Dalam Pengembangan Pariwisata Di Taman Nasional Karimunjawa. Kritis, 28(2), 140–148. https://doi.org/10.24246/kritis.v28i2p140-148
McClanahan, T. R., Donner, S. D., Maynard, J. A., MacNeil, M. A., Graham, N. A. J., Maina, J., Baker, A. C., Alemu I., J. B., Beger, M., Campbell, S. J., Darling, E. S., Eakin, C. M., Heron, S. F., Jupiter, S. D., Lundquist, C. J., McLeod, E., Mumby, P. J., Paddack, M. J., Selig, E. R., & van Woesik, R. (2012). Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS ONE, 7(8). https://doi.org/10.1371/journal.pone.0042884
Mcleod, E., Anthony, K. R. N., Mumby, P. J., Maynard, J., Beeden, R., Graham, N. A. J., Heron, S. F., Hoegh-Guldberg, O., Jupiter, S., MacGowan, P., Mangubhai, S., Marshall, N., Marshall, P. A., McClanahan, T. R., Mcleod, K., Nyström, M., Obura, D., Parker, B., Possingham, H. P., … Tamelander, J. (2019). The future of resilience-based management in coral reef ecosystems. Journal of Environmental Management, 233(January 2019), 291–301. https://doi.org/10.1016/j.jenvman.2018.11.034
Muhidin, Pardede, S. T., Giffari, M. I., Apriliano, V. J., Rizki, P. H., & Jamaludin. (2019). Laporan Teknis Monitoring Ekosistem Terumbu Karang Taman Nasional Karimunjawa 2019.
Muhidin, Rizki, P. H., & Pardede, S. (2022). Laporan Singkat Monitoring Ekosistem Terumbu Karang Karimunjawa 2022.
Nozawa, Y., Lin, C. H., & Meng, P. J. (2020). Sea urchins (diadematids) promote coral recovery via recruitment on Taiwanese reefs. Coral Reefs, 39(4), 1199–1207. https://doi.org/10.1007/s00338-020-01955-1
Obura, D., & Grimsditch, G. (2009). Resilience Assessment of Coral Reefs – Rapid Assessment Protocol for Coral Reefs, Focusing on Bleaching and Thermal Stress. In Coral Reefs (Issue 5). http://cmsdata.iucn.org/downloads/resilience_assessment_final.pdf
Osborne, J. W., & Waters, E. (2003). Four assumptions of multiple regression that researchers should always test. Practical Assessment, Research and Evaluation, 8(2), 2002–2003.
Pardede, S., Tarigan, S. A. ., Setiawan, F., Muttaqin, E., & Muttaqin, A. (2016). Laporan Teknis?: Monitoring Ekosistem Terumbu Karang Taman Nasional Karimunjawa. Wildlife Conservation Society Indonesia Program.
Purnomo, A. R., Patria, M. P., Takarina, N. D., & Karuniasa, M. (2022). Environmental Impact of the Intensive System of Vannamei Shrimp (Litopenaeus vannamei) Farming on the Karimunjawa-Jepara-Muria Biosphere Reserve, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 12(3), 873–880. https://doi.org/10.18517/ijaseit.12.3.14181
Putro, S. P., Ramadhon, M. F., Munasik, Hariyati, R., & Adhy, S. (2022). The abundance of Scleractinia corals in relation to water quality in the maricultural area of Menjangan Island, Karimunjawa National Park. AACL Bioflux, 15(6), 3107–3120.
Rimayanti, R., Tarigan, S., Muttaqin, A., Rohman, E. A., Nurcahyadi, M., Muttaqin, E., Kartawijaya, T., Pardede, S., Jamaludin, & Pingkan, J. (2020). Kajian Dampak Wisata Bahari dan Daya Dukung Lokasi.
Ritson-Williams, R., Arnold, S., Fogarty, N., Steneck, R. S., Vermeij, M., & Paul, V. J. (2009). New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithsonian Contributions to the Marine Sciences, 38, 437–457. https://doi.org/10.5479/si.01960768.38.437
Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., & Staub, F. (2020). Status of Coral Reefs of the World: 2020. https://doi.org/10.59387/WOTJ9184
Steneck, R. S., Arnold, S. N., Boenish, R., de León, R., Mumby, P. J., Rasher, D. B., & Wilson, M. W. (2019). Managing recovery resilience in coral reefs against climate-induced bleaching and hurricanes: A 15 year case study from Bonaire, Dutch Caribbean. Frontiers in Marine Science, 6(JUN), 1–12. https://doi.org/10.3389/fmars.2019.00265
Veron, J.E.N. 2000. Corals of the world. Australian Institute of MarineScience and CRR Qld Pty Ltd., Queensland. 429 p.
Wijayanti, D. P., Indrayanti, E., Wirasatriya, A., Haryanto, A., Haryanti, D., Sembiring, A., Fajrianzah, T. A., & Bhagooli, R. (2019). Reproductive seasonality of coral assemblages in the Karimunjawa Archipelago, Indonesia. Frontiers in Marine Science, 6(MAR), 1–15. https://doi.org/10.3389/fmars.2019.00195
Yulianto, I., Hammer, C., Wiryawan, B., & Palm, H. W. (2015). Fishing-induced groupers stock dynamics in Karimunjawa National Park, Indonesia. Fisheries Science, 81(3), 417–432. https://doi.org/10.1007/s12562-015-0863-x

Most read articles by the same author(s)

1 2 > >>