Positive interaction of trembesi (Samanea saman) and arbuscular mycorrhizae fungi in Pb stabilization of gold-mine tailing media

##plugins.themes.bootstrap3.article.main##

LULUK SETYANINGSIH
FILDZAH AISYAH RAMADHANI
ZAINAL MUTTAQIN
MAMAY MASLAHAT

Abstract

Abstract. Setyaningsih L, Ramadhani FA, Muttaqin Z, Maslahat M. 2024. Positive interaction of trembesi (Samanea saman) and arbuscular mycorrhizae fungi in Pb stabilization of gold-mine tailing media. Biodiversitas 25: 379-385. This experiment aimed to determine the ability of trembesi (Samanea saman Merr.) seedlings inoculated with AMF (Glomus manihotis) to reduce Pb from gold mine tailings media. Therefore, using plants and Arbuscular Mycorrhizae Fungi (AMF) is an alternative choice that can be considered to support a phytoremediation program to reduce Pb contamination in tailing areas. The experiment was conducted using a completely randomized design in a greenhouse with two factors, i.e., with and without AMF, and four different Pb treatments (0, 0.5, 1, and 1.5 mM). AMF-inoculated seedlings were grown on tailings media and exposed to Pb in different concentrations for 5 weeks. The results showed that the seedlings were still able to grow on the media with Pb up to 1.5 mM with a tolerance index of 91.6%. AMF induced the plant to accumulate Pb dramatically higher, even though this absorption tended to reduce plant biomass. Root tissue stored significantly higher Pb than stem and leaf tissue, with an average concentration was 526.29 mg/kg in the roots of mycorrhizal seedlings. The bioaccumulation level of Pb in mycorrhizal seedlings was significantly higher. The value of the transport factor was below 1, indicating that S. saman seedlings carried out the phytostabilization. The interaction of AMF with S. saman has a big potential to be applied in efforts to remediate Pb in tailings.

##plugins.themes.bootstrap3.article.details##

References
Agilent Technologies, Inc. 2018. ICP-OES Agilent Technologist tipe 700-Manual Part Number 8510230100 Edition 8, June 2018. Agilent Technologies, Inc. https://www.agilent.com/cs/library/usermanuals/public/8510230100_700SeriesICP_UserManual.pdf
Bharwana SA, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MSA. 2014. Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot 38: 281-292.
Chen XW, Wu FY, Li H, Chan WF, Wu C, Wu SC, Wong MH. 2013. Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environmental and Experimental Botany 87, 92–99. doi:10.1093/jxb/erw403
Chen, H., Yuan, X., Li, T., Hu, S., Ji, J., Wang, C. 2016. Characteristics of heavy metal transfer and their influencing factors in different soil-crop systems of the industrialization region, China. Ecotox. Environ. Safe. 126, 193–201. doi: 10.1016/j.ecoenv.2015.12.042
Ferrol, Nuria, Elisabeth Tamayo, and Paola Vargas. 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany, Vol. 67, No. 22 pp. 6253–6265, 2016 doi:10.1093/jxb/erw403
Hamim, Hanifatunisa, Hadisunarso, Luluk Setyaningsih, Deden Saprudin.2019. Lead (Pb) toxicity effect on physio-anatomy of bead-tree, jatropha, castor bean and Philippine-tung grown in water culture. BIODIVERSITAS. Volume 20, Number 12, December 2019 Pages: 3690-3697. ISSN: 1412-033X E-ISSN: 2085-4722 DOI: 10.13057/biodiv/d201231
Heyne K. 1987. Tumbuhan Berguna Indonesia. Jakarta : Badan Penelitian dan Pengembangan Departemen Kehutanan Indonesia
Kanwal, Sadia, Asma Bano and Riffat Naseem Malik. 2016. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. African Journal of Biotechnology. Vol. 15(20), pp. 872-883, 18 May, 2016. DOI: 10.5897/AJB2016.15292
Leal, PL., Maryeimy Varón-López, Isabelle Gonc ?alves de Oliveira Prado, Jessé Valentim dos Santos, Cláudio Roberto Fonsêca Sousa Soares, José Oswaldo Siqueira, Fatima Maria de Souza Moreira. 2016. Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation. Brazilian Journal Microbiology. 4 7 (2 0 1 6) 853–862. https://doi.org/10.1016/j.bjm.2016.06.001
Malar, S., Vikram, S. S., Favas, P. J. C., and Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot. Stud. 55, 54. doi: 10.1186/s40529-014-0054-6
Magaña, A. M., E. F. Torres, F. R. Cabrera, T. L. V. Sepulveda, 2010. Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Plant Soil 339, 377–389 (2011). https://doi.org/10.1007/s11104-010-0589-6
Nas, F.S., Ali, M., 2018. The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Eco Environ. Sci. 3 (4), 265–268. https://doi.org/ 10.15406/mojes.2018.03.00098.
Osmolovskaya N, Dung V?V, and Kuchaeva L. 2018. The role of organic acids in heavy metal tolerance in plants. Bio. Comm. 63(1): 9–16. https://doi.org/10.21638/spbu03.2018.103
Salim,MA., Setyaningsih, L. Wahyudi, I., Budi, SW. 2022. Growth response of three forest seedling to iron exposure. Malaysian Journal Of Biochemistry & Molecular Biology
The Official Publication of The Malaysian Society For Biochemistry & Molecular Biology (MSBMB)
http://mjbmb.org Special Issue, 2021, 1, 68 - 76: DOI 10.1088/1755-1315/959/1/012051
Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. 2017. Review phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171: 710-721. DOI: 10.1016/j.chemosphere.2016.12.116.
SasNowosielska, A, R. Galimska-Stypa, R. Kucharski, U. Zielonka, E. Ma?kowski, and L. Gray. 2008. “Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil,” Environmental Monitoring and Assessment, vol. 137, no. 1–3, pp. 101–109, 2008. DOI: 10.1007/s10661-007-9732-0
Sighn, B. S. Manisha, Dipanjali Singh, Nabin Kumar Dhal. 2022. Enhanced phytoremediation strategy for sustainable management of heavy metals and radionuclides. Case Studies in Chemical and Environmental Engineering. Case Studies in Chemical and Environmental Engineering 5 (2022) 100176. https://doi.org/10.1016/j.cscee.2021.100176
Setyaningsih, L., Y Setiadi, S W Budi, Hamim and D Sopandie. 2017. Lead accumulation by jabon seedling (Anthocephalus cadamba) on tailing media with application of compost and arbuscular mycorrhizal fungi. IOP Conf. Series: Earth and Environmental Science 58 (2017) 012053 doi:10.1088/1755-1315/58/1/012053
Setyaningsih, Luluk, Arum Sekar Wulandari, Hamim Hamim. 2018. Growth of typha grass (Typha angustifolia) on gold-mine tailings with application of arbuscular mycorrhiza fungi , Biodiversitas Journal of Biological Diversity: Vol. 19 No. 2 (2018). https://doi.org/10.13057/biodiv/d210224
Setyaningsih, Luluk, Firli Azhar Dikdayatama, Arum Sekar Wulandari . 2020. Arbuscular mycorrhizal fungi and Rhizobium enhance the growth of Samanea saman (trembesi) planted on gold-mine tailings in Pongkor, West Java, Indonesia. Biodiversitas ISSN: 1412-033XVolume 21, Number 2, February 2020E-ISSN: 2085-4722 Pages: 611-616. DOI: 10.13057/biodiv/d210224
Setyaningsih, Luluk, Yadi Setiadi, Didy Sopandie, Sri Wilarso Budi. 2012. Organic Acid Characteristics and Tolerance of Sengon (Paraserianthes falcataria L Nielsen) to Lead. JMHT Vol. XVIII, (3): 177-183, Desember 2012 EISSN: 2089-2063. DOI: 10.7226/jtfm.18.2.177
Setyaningsih, L., M Maslahat, M A Syahrizki. 2021. Adaptation pattern of trembesi (Samanea saman Jacq. Merr.) seedling to lead exposure at nutrient culture based on the characteristics of organic acid
Collin, Samuel, Amritha Baskar, Deepthi Mariam Geevarghese, Mohamed Niyaz Vellala Syed Ali, Praveena Bahubali, Rajan Choudhary, Vladislav Lvov, Gabriel Ibrahin Tovar , Fedor Senatov , Sivasankar Koppala , Sasikumar Swamiappan. 2022. Bioaccumulation of lead (Pb) and its effects in plants: A review . Journal of Hazardous Materials Letters 3 . (2022) 100064 https://doi.org/10.1016/j.hazl.2022.100064
Staples, G.W., and C.R. Elevitch. 2006. Samanea saman (rain tree), ver. 2.1. In: C.R. Elevitch (ed.). Species Profiles for Pacific Island Agroforestry. Permanent Agriculture Resources (PAR), H?lualoa, Hawai‘i.
Tangahu, Bieby Voijant, Siti Rozaimah Sheikh Abdullah, Hassan Basri, Mushrifah Idris, Nurina Anuar, and Muhammad Mukhlisin. 2011. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Hindawi Publishing Corporation International Journal of Chemical Engineering Volume 2011, Article ID 939161, 31 pages doi:10.1155/2011/939161
Van Ginneken, L., E. Meers, R. Guisson et al., 2007. “Phytoremediation for heavy metal-contaminated soils combined with bioenergy production,” Journal of Environmental Engineering and Landscape Management, vol. 15, no. 4, pp. 227–236, 2007.
Winata, Bayu. 2016. Pengaruh Penambahan Timbal Terhadap Pertumbuhan dan Adaptabilitas Semai Samama dan Akasia pada Media Tailing. Bogor (ID) : Institut Pertanian Bogor.
Wu S, Zhang X, Chen B, Wu Z, Li T, Hu Y, Sun Y, Wang Y. 2016. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany 122, 10–18. https://doi.org/10.1016/j.envexpbot.2015.08.006
Wang Y, Tao J, Dai J. 2011. Lead tolerance and detoxification mechanism of Chlorophytumcomosum. African Journal of Biotechnology 10: 14516-14521. DOI: 10.5897/AJB11.1496
Yang X, Ying F, Zhenli H, Peter JS. 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Review. Journal of Trace Elements in Medicine and Biology, 18 : 339–353. https://doi.org/10.1016/j.jtemb.2005.02.007
Yang, Y., Liang, Y., Ghosh, A., Song, Y., Chen, H., Tang, M. 2015. Assessment of Arbuscular Mycorrhizal Fungi Status and Heavy Metal Accumulation Characteristics of Tree Species in A Lead – Zinc Mine Area: Potential application for phytoremendiation. Enviro.Sci.Pollut.Res.22, 13179-13193. DOI:10.1007/s111356-4521-8

Most read articles by the same author(s)