Combining eDNA metabarcoding and conventional method in rapid screening of fish diversity in Maros-Pangkep Global Geopark, South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

AMBENG
MUHAMMAD IQRAM
https://orcid.org/0000-0003-4394-897X
MAGDALENA LITAAY
ZOHRAH HASYIM
WILMA J. C. MOKA
GEORGINA MARIA TINUNGKI

Abstract

Abstract. Ambeng, Iqram M, Litaay M, Hasyim Z, Moka WJC, Tinungki GM. 2024. Combining eDNA metabarcoding and conventional method in rapid screening of fish diversity in Maros-Pangkep Global Geopark, South Sulawesi, Indonesia. Biodiversitas 25: 819-828. A newly designated geopark by UNESCO, Maros-Pangkep Global Geopark, South Sulawesi, Indonesia owns great geodiversity, exceptional cultural heritage, and high biodiversity. However, the global biodiversity crisis that has hit the earth might also occur in Maros-Pangkep river systems, potentially threatening endemic freshwater fish and all other biota. It has been reported that there is high pressure on the environment along the watershed in the Maros-Pangkep rivers, including a high sedimentation rate downstream, which is linked to extreme erosion upstream and could eventually affect fish populations such as endemic ones. This should prompt a call for the authorities to build a strategy for monitoring and documenting aquatic biota such as fish to preserve biodiversity. Environmental DNA (eDNA) could be considered a method for monitoring fish species based on the DNA traces they shed in the water. Hence, this study aims to use eDNA to survey fish biodiversity in several rivers in the Maros-Pangkep Global Geopark and compare the result against the traditional gillnet method. The results showed that using two methods, 29 fish species in 19 families and 15 orders were obtained from the three rivers. Despite the majority of detected species, 25 species, as the result of using eDNA, 4 species were only detected using a traditional method which eDNA failed to identify. Among those species, several endemic and non-native species were successfully identified by either one or both methods. This could eventually be a suggestion for responsible authorities in biodiversity conservation to combine both approaches to monitor and conserve local biodiversity.

##plugins.themes.bootstrap3.article.details##

References
Ali, D., Almarzoug, M. H. A., Al Ali, H., Samdani, M. S., Hussain, S. A., & Alarifi, S. (2020). Fish as bio indicators to determine the effects of pollution in river by using the micronucleus and alkaline single cell gel electrophoresis assay. Journal of King Saud University - Science, 32(6), 2880–2885. https://doi.org/10.1016/j.jksus.2020.07.012
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 421. https://doi.org/10.1186/1471-2105-10-421
Curtis, A. N., Tiemann, J. S., Douglass, S. A., Davis, M. A., & Larson, E. R. (2021). High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Diversity and Distributions, 27(10), 1918–1931. https://doi.org/10.1111/ddi.13196
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350
Desrita, D., Muhtadi, A., Leidonald, R., Sibagariang, R. D., & NURFADILLAH. (2020). Biodiversity of nekton in Batangtoru River and its tributaries in North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(6), Article 6. https://doi.org/10.13057/biodiv/d210602
Evans, N. T., Li, Y., Renshaw, M. A., Olds, B. P., Deiner, K., Turner, C. R., Jerde, C. L., Lodge, D. M., Lamberti, G. A., & Pfrender, M. E. (2017). Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences, 74(9), 1362–1374. https://doi.org/10.1139/cjfas-2016-0306
He, W., Xu, D., Liang, Y., Ren, L., & Fang, D. (2022). Using eDNA to assess the fish diversity and spatial characteristics in the Changjiang River-Shijiu Lake connected system. Ecological Indicators, 139, 108968. https://doi.org/10.1016/j.ecolind.2022.108968
Heberle, H., Meirelles, G. V., Da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16(1), 169. https://doi.org/10.1186/s12859-015-0611-3
IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T. P., Sado, T., Mabuchi, K., Takeshima, H., & Miya, M. (2013). MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Molecular Biology and Evolution, 30(11), 2531–2540.
Janse, J. H., Kuiper, J. J., Weijters, M. J., Westerbeek, E. P., Jeuken, M. H. J. L., Bakkenes, M., Alkemade, R., Mooij, W. M., & Verhoeven, J. T. A. (2015). GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environmental Science & Policy, 48, 99–114. https://doi.org/10.1016/j.envsci.2014.12.007
Jerde, C. L. (2021). Can we manage fisheries with the inherent uncertainty from eDNA? Journal of Fish Biology, 98(2), 341–353. https://doi.org/10.1111/jfb.14218
Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), Article 1. https://doi.org/10.14806/ej.17.1.200
McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., & Araki, H. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Society Open Science, 2(7), 150088.
Nur, M., Rahardjo, M. F., & Simanjuntak, C. P. (2019). Iktiofauna di daerah aliran sungai Maros Provinsi Sulawesi Selatan. Syafei LS et Al, 41–51.
Omar, S. B. A., Hidayani, A. A., Yanuarita, D., Umar, M. T., & Andriyono, S. (2021). Phylogenetic Analysis of Endemic Fish from the Maros Karst Region, South Sulawesi, Indonesia. International Journal of Agriculture and Biology, 26(6), 661–666.
Pawlowski, J., Levin, L., Recio-Blanco, X., Le, J., Lejzerowicz, F., Cordier, T., Mulsow, S., Gjerde, K., Mengerink, K., & Gooday, A. J. (2018). Enabling the use of Environmental DNA for Regulatory Policymaking in the Marine Industrial Revolution.
Plessl, C., Otachi, E. O., Körner, W., Avenant-Oldewage, A., & Jirsa, F. (2017). Fish as bioindicators for trace element pollution from two contrasting lakes in the Eastern Rift Valley, Kenya: Spatial and temporal aspects. Environmental Science and Pollution Research International, 24(24), 19767. https://doi.org/10.1007/s11356-017-9518-z
Polanco F., A., Richards, E., Flück, B., Valentini, A., Altermatt, F., Brosse, S., Walser, J.-C., Eme, D., Marques, V., Manel, S., Albouy, C., Dejean, T., & Pellissier, L. (2021). Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environmental DNA, 3(6), 1113–1127. https://doi.org/10.1002/edn3.232
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873. https://doi.org/10.1111/brv.12480
Salam, I. A. P., Satari, D. Y., Inaku, D. F., Omar, S. B. A., Rukminasari, N., & Umar, M. T. (2021). The sangkarak river watersheds morphometric changes of Maros-Pangkajene Regency. IOP Conference Series: Earth and Environmental Science, 860(1), 012083.
Shen, M., Xiao, N., Zhao, Z., Guo, N., Luo, Z., Sun, G., & Li, J. (2022). eDNA metabarcoding as a promising conservation tool to monitor fish diversity in Beijing water systems compared with ground cages. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-15488-w
Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
UNESCO. (2023). Maros Pangkep UNESCO Global Geopark | UNESCO. https://www.unesco.org/en/iggp/geoparks/maros-pangkep
Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., … Dejean, T. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology, 25(4), 929–942. https://doi.org/10.1111/mec.13428