Genetic comparison among some cultivars of Catharanthus roseus (L.) G. Don. using three intergenic spacers of the chloroplast genome

##plugins.themes.bootstrap3.article.main##

AGUS HERY SUSANTO
MURNI DWIATI
https://orcid.org/0000-0001-8785-7987

Abstract

Abstract. Susanto AH, Dwiati M. 2024. Genetic comparison among some cultivars of Catharanthus roseus (L.) G. Don. using three intergenic spacers of the chloroplast genome. Biodiversitas 25: 2999-3007. Catharanthus roseus (L.) G. Don belongs to the Apocynaceae family and is recognized as both an ornamental plant and a medicinal herb. By means of both hybridization and mutation breeding, numerous cultivars of C. roseus have been developed over time. This encourages the necessity for molecular characterization to establish a DNA barcode for each cultivar, particularly in relation to its potential as a medicinal herb. Therefore, this study aimed to genetically compare some cultivars of C. roseus based on three Intergenic Spacers (IGS) of the chloroplast genome, namely trnQ-rps16, rps16-trnK, and trnL-rpl32. Ten samples of C. roseus were randomly collected from around Purwokerto City, Central Java, Indonesia, representing cultivars with various corolla and flower eye colors. Universal primers were used to amplify the three molecular markers. The results showed that some insertion-deletions (indels) with rps16-trnK and trnL-rpl32 were observed, indicating some potential barcodes for C. roseus cultivars, following pharmacological analysis. On the other hand, very little genetic difference among samples was found with trnQ-rps16. It can be concluded that some other molecular markers, specifically those more closely related to the expression of flower color in C. roseus, should be explored to obtain candidate DNA barcodes in assisting the authentication of medicinal herbs.

##plugins.themes.bootstrap3.article.details##

References
Aruna MS, Prabha MS, Priya NS, Nadendla R. 2015. Catharanthus roseus: ornamental plant is now medicinal boutique. Journal of Drug Delivery and Therapeutics 5(3): 1–4. https://doi.org/10.22270/jddt.v5i3.1095
Bai X, Wang G, Ren Y, Su Y, Han J. 2023. Insights into taxonomy and phylogenetic relationships of eleven Aristolochia species based on chloroplast genome. Frontiers in Plant Science 14: 1–10. https://doi.org/10.3389/fpls.2023.1119041
Barberá P, Soreng RJ, Peterson PM, Romaschenko K, Quintanar A, Aedo C. 2020. Molecular phylogenetic analysis resolves Trisetum (Poaceae: Pooideae: Koeleriinae) polyphyletic: evidence for a new genus, Sibirotrisetum and resurrection of Acrospelion. Journal of Systematics and Evolution 58(4): 517–526. https://doi.org/10.1111/jse.12523
Chen CM, Yeh DM. 2012. “Taoyuan No. 1 Rose Girl”: a double-flowered periwinkle, Catharanthus roseus. HortScience 47(8): 1175–1176. https://doi.org/10.21273/hortsci.47.8.1175
Cheong WY, Kim SH, Yang JY, Lee W, Pak JH, Kim SC. 2020. Insights from chloroplast DNA into the progenitor-derivative relationship between Campanula punctata and C. takesimana (Campanulaceae) in Korea. Journal of Plant Biology 63(6): 431–444. https://doi.org/10.1007/s12374-020-09281-3
Das S, Krishi Viswavidyalaya C, Sharangi AB. 2017. Madagascar periwinkle (Catharanthus roseus L.): diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry 6(5): 1695–1701.
Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D, Cho WC. 2022. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell International 22(1): 1–20. https://doi.org/10.1186/s12935-022-02624-9
Doyle JJ, Doyle JL. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12(1): 13–15.
El-Sherif N, Ibrahim M. 2020. Implications of rbcl and rpoC1 DNA barcoding in phylogenetic relationships of some Egyptian medicago sativa l. cultivars. Egyptian Journal of Botany 60(2): 451–460. https://doi.org/10.21608/ejbo.2020.20028.1399
Hall TA. 1999. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series 41: 95–98.
Kang L, Xie D, Xiao Q, Peng C, Yu Y, He X. 2019. Sequencing and analyses on chloroplast genomes of Tetrataenium candicans and two allies give new insights on structural variants, DNA barcoding and phylogeny in Apiaceae subfamily Apioideae. PeerJ 11: 1-24. https://doi.org/10.7717/peerj.8063
Kang Y, Deng Z, Zang R, Long W. 2017. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Scientific Reports 7(1): 1–9. https://doi.org/10.1038/s41598-017-13057-0
Ku C, Chung WC, Chen LL, Kuo CH. 2013. The complete plastid genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in Asterids. PLoS ONE 8(6): 1-12. https://doi.org/10.1371/journal.pone.0068518
Lee YE, Lee Y, Kim S. 2021. A report of the second chloroplast genome sequence in Veronica nakaiana (Plantaginaceae), an endemic species in Korea. Korean Journal of Plant Taxonomy 51(1): 109–114. https://doi.org/10.11110/kjpt.2021.51.1.109
Lv YN, Yang CY, Shi LC, Zhang ZL, Xu AS, Zhang LX, Li XL, Li HT. 2020. Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes. Chinese Journal of Natural Medicines 18(8): 594–605. https://doi.org/10.1016/S1875-5364(20)30071-6
Makki RM, Saeedi AA, Khan TK, Ali HM, Ramadan AM. 2019. Single nucleotide polymorphism analysis in plastomes of eight Catharanthus roseus cultivars. Biotechnology and Biotechnological Equipment 33(1): 419–428. https://doi.org/10.1080/13102818.2019.1579671
Martínez-Vega AL, Oregel-Zamudio E, García-Ruíz I, Villapando-Arteaga EV, Torres-García JR. 2022. Genetic and metabolomic differentiation of Physalis ixocarpa Brot. ex Hornem. populations in Michoacan State, Mexico. Genetic Resources and Crop Evolution 69(5): 1867–1877. https://doi.org/10.1007/s10722-022-01347-0
Miguez M, Bartolucci F, Jiménez-Mejías P, Martín-Bravo S. 2022. Re-evaluating the presence of Carex microcarpa (Cyperaceae) in Italy based on herbarium material and DNA barcoding. Plant Biosystems 156(3): 628–634. https://doi.org/10.1080/11263504.2021.1897703
Mishra JN, Verma NK. 2017. A brief study on Catharanthus roseus: a review. International Journal of Research in Pharmacy and Pharmaceutical Sciences 2(2): 20–23.
Neves B, Kessous IM, Moura RL, Couto DR., Zanella CM, Antonelli A, Bacon CD, Salgueiro F, Costa AF. 2021. Pollinators drive floral evolution in an Atlantic Forest genus. AoB Plants 12(5): 1–12. https://doi.org/10.1093/aobpla/plaa046
Noormohammadi Z, Asghari-Mooneghi N, Farahani F. 2020. Effect of gamma radiation on morphological and genetic variation in regenerated plantlets Catharanthus roseus (L.) G Don. Genetika 52(1): 15-28. https://doi.org/10.2298/GENSR2001015N
Noormohammadi Z, Taban M, Farahani F. 2018. Short communication: The impact of gamma radiation on tdc and str gene expressions in Catharanthus roseus regenerated plantlets. Biodiversitas 19(5): 1805–1810. https://doi.org/10.13057/biodiv/d190530
Padmaa Paarakh M, Swathi S, Taj T, Tejashwini V, Tejashwini B. 2019. Catharanthus roseus Linn—a review. Acta Scientific Pharmaceutical Sciences 3(10): 19–24. https://doi.org/10.31080/asps.2019.03.0393
Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R. 2016. Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochemistry Reviews 15(2): 221–250. https://doi.org/10.1007/s11101-015-9406-4
Park HS, Lee WK, Lee SC, Lee HO, Joh HJ, Park JY, Kim S, Song K, Yang TJ. 2021. Inheritance of chloroplast and mitochondrial genomes in cucumber revealed by four reciprocal F1 hybrid combinations. Scientific Reports 11(1): 1–11. https://doi.org/10.1038/s41598-021-81988-w
Peterson PM, Romaschenko K, Arrieta YH. 2022. A phylogeny of the Triraphideae including Habrochloa and Nematopoa (Poaceae, Chloridoideae). PhytoKeys 194: 123–133. https://doi.org/10.3897/phytokeys.194.80967
Peterson PM, Romaschenko K, Herrera-Arrieta Y, Vorontsova MS. 2022. Phylogeny, classification, and biogeography of Afrotrichloris, Apochiton, Coelachyrum, Dinebra, Eleusine, Leptochloa, Schoenefeldia, and a new genus, Schoenefeldiella (Poaceae: Chloridoideae: Cynodonteae: Eleusininae). Journal of Systematics and Evolution 60(3): 630–639. https://doi.org/10.1111/jse.12803
Shadrin D, Dalke I, Zakhozhiy I, Shilnikov D, Kozhin M, Chadin I. 2023. Heracleum sosnowskyi or Heracleum mantegazzianum? DNA-based identification of invasive hogweeds (Apiaceae) in two key regions of the species’ invasion history in the territory of the former Soviet Union. Research Square: 1–27. https://doi.org/10.21203/rs.3.rs-3296382/v1
Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94(3): 275–288. https://doi.org/10.3732/ajb.94.3.275
Smidt EDC, Páez MZ, Vieira LDN, Viruel J, De Baura VA, Balsanelli E, De Souza EM, Chase MW. 2020. Characterization of sequence variability hotspots in Cranichideae plastomes (Orchidaceae, Orchidoideae). PLoS ONE 15(1): 1–15. https://doi.org/10.1371/journal.pone.0227991
Song Y, Zhao W, Xu J, Li MF, Zhang Y. 2022. Chloroplast genome evolution and species identification of Styrax (Styracaceae). BioMed Research International 2022: 1-13. https://doi.org/10.1155/2022/5364094
Sung JS, Chung JW, Lee GA, Kang MJ, Lee SY, Huh MK. 2013. Genetic diversity and phenetic relationship of dill (Anethum graveolens L.) by rps16-trnK DNA sequences. Journal of Life Science 23(11): 1305–1310. https://doi.org/10.5352/jls.2013.23.11.1305
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
Tang P, Xu Q, Shen R, Yao X. 2019. Phylogenetic relationship in Actinidia (Actinidiaceae) based on four noncoding chloroplast DNA sequences. Plant Systematics and Evolution 305(9): 787–796. https://doi.org/10.1007/s00606-019-01607-0
Thanh LD, Kim HHT, Thuy TLL. 2022. Analysis genetic variation and phylogenetic relationships of local lotus collected in Thua Thien hue province, Vietnam by DNA barcoding. Research Journal of Biotechnology 17(2): 48–56. https://doi.org/10.25303/1702rjbt4856
Thompson JD, Higgins DG, Gibson TJ. 1994. ClustalW: improving the sensitivity of progressive multiple sequence aligment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research Acids Research 22(22): 4673–4680. https://doi.org/10.1093/nar/22.22.4673
Vu PTB, Cao DM, Bui AL, Nguyen NN, Van Bui L, Quach PND. 2022. In vitro growth and content of vincristine and vinblastine of Catharanthus roseus L. hairy roots in response to precursors and elicitors. Plant Science Today 9(1): 21–28. https://doi.org/10.14719/pst.1337
Wang Y, Wang S, Liu Y, Yuan Q, Sun J, Guo L. 2021. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics 22(1): 1–12. https://doi.org/10.1186/s12864-021-07394-8
Wei LM. 2022. Metabolite Profiling and DNA Barcoding Analysis of 35 Malaysian Medicinal Plants. [Dissertation]. Faculty of Medicine and Health Sciences Universiti Tunku Abdul Rahman, Malaysia.
Xie X, Huang R, Li F, Tian E, Li C, Chao Z. 2021. Phylogenetic position of Bupleurum sikangense inferred from the complete chloroplast genome sequence. Gene 798: 1-13. https://doi.org/10.1016/j.gene.2021.145801
Zhang L, Wang S, Su C, Harris AJ, Zhao L, Su N, Wang JR, Duan L, Chang ZY. 2021. Comparative chloroplast genomics and phylogenetic analysis of Zygophyllum (Zygophyllaceae) of China. Frontiers in Plant Science 12: 1–17. https://doi.org/10.3389/fpls.2021.723622
Zhang YW, Kong XY, Wang JH, Du GH. 2018. Vinblastine and vincristine. Natural Small Molecule Drugs from Plants: 551–562. https://doi.org/10.1007/978-981-10-8022-7_91
Zhu S, Liu Q, Qiu S, Dai J, Gao X. 2022. DNA barcoding: an efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chinese Medicine 17(1): 1–17. https://doi.org/10.1186/s13020-022-00655-y.